
Representative Patch-based Active Appearance
Models Generated from Small Training

Populations

Matthias Wilms, Heinz Handels, and Jan Ehrhardt

Institute of Medical Informatics, University of Lübeck, Lübeck, Germany,
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Abstract. Active Appearance Models (AAMs) and Constrained Local
Models (CLMs) are classical approaches for model-based image segmen-
tation in medical image analysis. AAMs consist of global statistical mod-
els of shape and appearance, are known to be hard to fit, and often suf-
fer from insufficient generalization capabilities in case of limited training
data. CLMs model appearance only for local patches and relax or com-
pletely remove the global appearance constraint. They are, therefore,
much easier to optimize but in certain cases they lack the robustness
of AAMs. In this paper, we present a framework for patch-based ac-
tive appearance modeling, which elegantly combines strengths of AAMs
and CLMs. Our models provide global shape and appearance constraints
and we make use of recent methodological advances from computer vi-
sion for efficient joint optimization of shape and appearance parameters
during model fitting. Furthermore, the insufficient generalization abili-
ties of those global models are tackled by incorporating and extending a
recent approach for learning representative statistical shape models from
small training populations. We evaluate our approach on publicly avail-
able chest radiographs and cardiac MRI data. The results show that the
proposed framework leads to competitive results in terms of segmenta-
tion accuracy for challenging multi-object segmentation problems even
when only few training samples are available.

1 Introduction

Active Appearance Models (AAMs) [2] and Constrained Local Models (CLMs)1

[8] are widely used in medical image analysis for robust model-based segmenation
(see [1, 4, 6] for examples). Both approaches rely on the classical point- and PCA-
based statistical shape modeling framework [3] and represent the shape space
observed in a training population by a mean shape and a variability model. In
addition to this global shape prior, AAMs also learn a gobal statistical model of
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the typical (gray value) appearance/texture of those objects. During the segmen-
tation process, an AAM, therefore, not only provides global a-priori information
about plausible shape instances but also about global appearance variations.
These properties are favourable for robust segmentation, but lead to compli-
cated exact or heuristic fitting algorithms [7, 2] and to the limited generalization
abilities of AAMs in case of small training populations [12]. CLMs, therefore,
nowadays typically replace the global appearance model with (independent) lo-
cal detectors for each landmark (i.e. random forests in [6]) based on small image
patches. During model fitting, the shape model is used to globally regularize
the local detector reponses to guarantee plausability of the resulting shape. This
leads to efficient optimization strategies but ambiguities cannot always be re-
solved, which negatively impacts the segmentation performance [8].

Methodological advances and the availability of large annotated training data
sets have led to a recent successful revival of AAM-based face tracking methods
in computer vision (CV; see [12] for an overview). The main goal of this work is
to show that this recent success in CV can be transferred to medical problems
when those approaches are adequately adapted and the lack of training data is
accounted for. Therefore, the contributions of this paper are threefold: (1) We
adapt the recent patch-based facial shape and appearance modeling approach
from [11] and the Fast-SIC fitting algorithm from [12] to multi-object segmenta-
tion in medical image data. This approach elegantly combines strengths of AAMs
(global shape and appearance models) and CLMs (efficient optimization, use of
small patches). (2) We incorporate our recent approach for learning of represen-
tative statistical shape models from few training data [13] into this framework
and extend it to patch-based appearance modeling. (3) We show that this novel
combination of methods leads to competitive results on publicly available chest
radiographs and cardiac MRI data and outperforms traditional AAM methods.

2 Methods

Although being independent of the image/data dimensionality (2D or 3D), we
will describe our methods in a 2D scenario for ease of understanding. We start
with a description of our patch-based AAM framework in Sec. 2.1, which is
followed by an explanation of the method we adapted and extended for learning
representative AAMs from small training populations in Sec. 2.2. See Fig. 1 for
a graphical overview of the proposed framework.

2.1 Patch-based AAM framework: Definition and Optimization

In the following, we assume a set {si}NSi=1 of NS 2D training shapes/contours si
and a set of {Ii}NSi=1 corresponding images Ii : R2 → R to be given. Each contour
is defined by NM points si = [xi,1, yi,1, . . . , xi,NM , yi,NM ]T ∈ R2NM distributed
across its surface. We also assume that the landmarks are in correspondence
across the training samples and that shape differences due to similarity trans-
formations have been removed from the data (contours and images).
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Fig. 1. Graphical overview of the proposed framework for patch-based active appear-
ance modeling with few training samples. See text for details.

According to [12] an AAM consists of a statistical shape model (SSM), a sta-
tistical appearance model (SAM), and a suitable motion/transformation model
used to map shape-free textures onto a new shape instance. For our patch-based
AAM framework, which largely follows [11], we start by defining the SSM as a
standard point distribution model [3]:

s(b) = s + Pb , with s =
1

NS

NS∑
i=1

si . (1)

Here, P ∈ R2NM×Nb denotes an orthonormal matrix whose Nb columns are
eigenvectors of the covariance matrix Cs = 1/NS

∑i=1
NS

(si − s)(si − s)T , and
which compactly represents the subspace of plausible shapes. New shapes can
be generated from Eq. (1) by varying parameter vector b ∈ RNb . As proposed
in [7], P also includes 4 orthonormal vectors to describe similarity transforms of
the shapes generated (included in Nb).

To build a SAM, we first define that we are only interested in modeling
the object appearance at small quadratic patches centered around each land-
mark. Furthermore, each patch defines a Ne × Ne regular grid with Np = N2

e

sampling locations. For model training, appearance information for each im-
age Ii is obtained by simply sampling the image information at patches placed
at the corresponding landmark locations. For statistical analysis, the appear-
ance information of each image is concatenated to form an appearance vector
ai ∈ RNa , with Na = NMNpNf where Nf denotes the number of features ex-
tracted (gray values, descriptors, ...) at each sampling location (e.g., for raw gray
values Nf = 1). After applying an eigenvalue decomposition to the covariance

matrix Ca = 1/NS
∑i=1
NS

(ai−a)(ai−a)T , we end up with a SAM similar to Eq.
(1):

a(c) = a + Qc , with a =
1

NS

NS∑
i=1

ai , Q ∈ RNa×Nc , and c ∈ RNc . (2)

The SSM in Eq. (1) and the SAM in Eq. (2) define our patch-based AAM
(Patch-AAM). Please note that for computational efficiency, we refrain from
explicitly coupling both models as i.e. done in [2] and that our Patch-AAM
implicitly defines a simple translational motion model instead of the complicated,
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traditional piecewise-affine warp [7]. Instances of Eq. (1) and Eq. (2) are simply
combined by translating the generated patches a(c) to the landmark locations
given by s(b). Global scale changes and rotations can be handled by applying the
associated similarity transform to the patches/image. Moreover, multiple objects
can be easily handled by merging the landmarks/appearance information of all
objects into one vector.

Fitting the Patch-AAM to an unseen image I : R2 → R is now (with a slight
abuse of notation and a patch-sampling/vectorization function φ(·, ·)) defined as
a joint non-linear least-squares problem:

arg min
b,c

‖φ(I, s(b))− a(c)‖2 . (3)

Parameters b and c that optimally explain the image content in a least-squares
sense are sought. Optimizing Eq. (3) is hard due to the non-linearity in b. We
follow the computationally efficient Gauss-Newton-like Fast-SIC optimization
strategy presented in [12] to iteratively minimize Eq. (3). Fast-SIC was chosen
due to its demonstrated ability to produce state-of-the-art results in CV [12].

After linearizing Eq. (3) with respect to the model and omission of second-
order terms, we arrive at

arg min
∆b,∆c

‖φ(I, s(b))− a(c)−Q∆c− J∆b‖2 (4)

to compute updates ∆b and ∆c, where J ∈ RNa×Nb is the Jacobian of Q with
respect to s(0) (see [11] for details). With JF = J−QQTJ, closed-form solutions
∆b = (JTFJF)−1JF(φ(I, s(b)) − a) and ∆c = QT (φ(I, s(b)) − a(c) − J∆b) for
both updates can be obtained in an alternating fashion. Because of the simple
translational motion model, the shape and appearance parameters can finally be
updated by b← b−∆b and c← c +∆c.

2.2 Building representative Patch-AAMs from few training samples

The generalization capabilities and the segmentation performance of the Patch-
AAMs presented in Sec. 2.1 will be mainly influenced by the quality and quan-
tity of the training samples used to build the models. In medical image analysis,
building AAMs often results in high-dimension-low-sample-size (HDLSS) prob-
lems, because the number of training samples is typically much smaller than the
dimensionality of the data to be modeled (e.g., NS � 2NM and NS � Na).
In practice, this limits the dimension of the subspaces defined by P and Q to
NS − 1, the rank of Cs/Ca. It is unlikely that for very small sample sizes (e.g.,
NS = 10), the space of plausible shapes/appearances is appropriately approx-
imated by such low-dimensional subspaces. We, therefore, aim to extend the
dimension of those subspaces to Nb > NS − 1 and Nc > NS − 1 in a plausible
way to improve the generalization ability of the Patch-AAM in HDLSS scenarios.

Here, we utilize and extend the recent approach from [13] for building repre-
sentative SSMs from few data, which is based on manipulations of the covariance
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matrices and has several major advantages: It generates a single consistent shape
model with global and local variability, seamlessly integrates with existing SSM-
based frameworks, naturally handles multi-object scenarios, and was shown to
outperform competing methods in [13].

In [13] it is assumed that in HDLSS scenarios some covariances (esp. those
between distant points) in Cs are overestimated. Therefore, a principle of local-
ity (= interaction between distant landmarks is limited) is applied by defining
a distance measure d(si, sj) on the set of landmarks and a cascade of thresh-
olds τ1 > τl > . . . > τNl . For each τ , a manipulated covariance matrix Csτ is
computed by enforcing the correlation between landmarks d(si, sj) > τ to be
0. The eigenvectors of Csτ define a subspace span(Pτ ) ⊂ R2NM of dimension
Nbτ ≥ NS − 1 because rank(Csτ ) ≥ rank(Cs), where the exact value of Nbτ
depends on τ . Now, starting with P1

∗ = Pτ1 , the Nl subspaces are combined into
a single multi-level shape model by successively searching for orthonormal bases
Pl
∗ of increasing locality in way that preserves global information [13]:

Pl
∗ = arg min

P
dG(P,Pτl) s.t. span(Pl−1

∗ ) ⊆ span(P) . (5)

Here, dG(·, ·) is a geodesic distance between subspaces and Pl
∗ can be efficiently

computed with an algorithm given in [13]. Finally, the orthonormal basis P∗ =
PNl
∗ , which represents global and local variability, can be plugged into Eq. (1).

In [13], this locality-based approach is only defined/used to enhance SSMs.
We, however, strongly believe that in an AAM framework, the fitting algorithm
can only make full use of the additional flexibility of P∗ when the SAM is
enhanced in a similar way. We, therefore, propose to apply the same method to
the covariance matrix Ca of the SAM. Due to the patch-based definition of our
AAM, we can simply use a distance d on the shape landmarks to manipulate
Ca, if we define that all points of a patch have the same distance to all points
of another patch. Hence, sampling points of one patch are not separated by the
manipulations. As for the SSM, the resulting orthonormal matrix Q∗ can be used
to replace Q in Sec. 2.1. This extension leads to a flexible Patch-AAM framework
to build representative shape and appearance models from few training data.

3 Experiments and Results

The objectives of our evaluation are as follows: (1) Analysis of the segmentation
performance of the proposed Patch-AAM approach on medical data. We focus on
multi-object problems and HDLSS scenarios. (2) Analysis of the hypothesis that
the fitting algorithm can only make full use of the flexibility of the locality-based
SSM when the approach is also employed to build the SAM.

Data: Two publicly available 2D data bases are used for the experiments. (1)
The JSRT/SCR data base [10, 4] that consists of 247 chest radiographs (2047 ×
2047 pixels; 0.175 mm pixel spacing) and provides ground-truth segmentations
for 5 structures (right/left lung, heart, right/left clavicle; represented by in total
166 corresponding landmarks; see [4]) for all cases. In [4], the data was divided



6

Table 1. Mean symmetric surface distances to the ground-truth segmentations ob-
tained for the different patch-based AAM approaches on both data sets and for different
numbers of training samples. See text for explanations. Results are given as mean±std.
dev. in mm over all available test cases and repetitions. Italic font indicates a statis-
tically significant difference to P-AAM. Bold font indicates a statistically significant
difference to L-SSM. Significance is assessed by paired t-tests with p < 0.05.

# Train. Gray values SSC descriptor
samples P-AAM L-SSM L-AAM P-AAM L-SSM L-AAM

JSRT/SCR chest radiographs
15 4.34±1.98 3.93±2.03 3.66±2.03 3.62±1.40 2.84±1.37 2.83±1.35
30 3.28±1.20 3.09±1.21 2.89±1.73 2.77±1.08 2.41±1.03 2.37±1.02
40 3.06±1.14 2.91±1.16 2.77±1.12 2.54±0.94 2.28±0.89 2.26±0.89
70 2.73±0.99 2.63±0.98 2.54±0.97 2.22±0.78 2.12±0.75 2.11±0.75

all 123 2.65±1.10 2.48±1.02 2.44±0.95 2.05±0.71 2.02±0.73 2.00±0.73
Cardiac MRI data

5 2.46±0.96 2.30±0.86 2.10±0.82 2.54±2.84 2.37±2.84 2.36±2.88
10 2.10±0.78 1.94±0.71 1.77±0.70 2.00±1.66 1.95±1.87 1.91±1.77
15 1.94±0.73 1.85±0.71 1.67±0.69 1.76±0.69 1.72±0.66 1.69±0.64
20 1.86±0.75 1.77±0.71 1.62±0.70 1.59±0.57 1.59±0.57 1.58±0.54

into two disjunct folds of 124 (fold1 ) and 123 cases (fold2 ), respectively. Here,
fold2 is employed to train the models, while fold1 is used as test data. (2) 32
mid-ventricular slices (256 × 256 pixels; avg. pixel spacing: 1.40 mm) taken
from different end-diastolic short axis cardiac MRI scans from [1]. For each case,
ground-truth contours for the endo- and epicardium of the left ventricle (LV) are
provided. We additionally segmented the right ventricle (RV). Each case consists
of 104 landmarks (manually placed at corresponding locations). Random subsets
of the data are employed for model training while the remaining cases are used for
testing. Both data bases contain challenging cases due to i.e. fuzzy boundaries,
the projective nature of the data (JSRT), and large anatomical variability.

Experimental design: We compare 3 different variants of the Patch-AAM
approach: (1) Patch-AAMs directly learned on the training samples (P-AAM,
see Sec. 2.1), (2) Patch-AAMs where the SSM is learned using the locality-based
approach (L-SSM, see Sec. 2.2), and (3) Patch-AAMs where the SSM and the
SAM are learned using the locality-based approach (L-AAM, see Sec. 2.2). For
the locality-based variants, we use the multi-object distance defined in [13] and
build 5 locality levels for the SSM and 3 for the SAM. Each variant is once
learned on the raw gray values (Nf=1 and Ne = 11) and once by using the
well-known SSC descriptor [5] with Nf = 6 and Ne = 5 to show the flexibility
of the framework. To mimic HDLSS scenarios, models are generated for varying
numbers of available training samples NS randomly sampled from the training
data (JSRT: 15, 30, 40, 70, all 123; Cardiac: 5, 10, 15, 20). Those models are then
used to segment the objects in the test images. The experiments are repeated
10 (JSRT)/20 (Cardiac) times to reduce the bias introduced via random sam-
pling. For P-AAM, the fitting algorithm is initialized with the mean shape and
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a multi-resolution scheme with 3 levels is employed. The locality-based variants
performed best with 2 multi-resolution levels. See our MATLAB code2 for addi-
tional parameter settings. The segmentation accuracy is quantitatively assessed
by computing mean symmetric contour distances to the ground-truth contours
weighted by the number of landmarks of each object.

Results: Our results are summarized in Tab. 1 and exemplarily illustrated in
Fig. 2. All 3 variants lead to competitive results for NS = 123 (JSRT)/NS = 20
(Cardiac) when compared to the literature. For the JSRT data, all variants
outperform the model-based approaches tested in [4, 13] (e.g., ASMs and AAMs;
best in [4]: Hybrid ASM with 2.77 mm) and the SSC-based models achieve results
comparable to [9] who obtain a mean distance of 2.10 mm on the same data.
For the cardiac data, the AAM in [1] achieves a mean error of ≈ 1.5 mm for LV
segmentation in 3D on the same data. We think our results obtained in 2D are
at least comparable to theirs, given the fact that we also segment the RV.

Regarding the specific performances of the locality-based variants (L-SSM/L-
AAM) for NS < 123 (JSRT)/NS < 20 (Cardiac), we can see effects comparable
to those observed in [13] for locality-based ASMs: In most cases, L-SSMs sig-
nificantly outperform P-AAMs (see Tab. 1; paired t-tests with p < 0.05). The
improvements tend to be larger for the JSRT data for which our results are
also at least comparable to those achieved in [13] for the same sample sizes and
data with a locality-based ASM. Most of ours are clearly better (e.g. NS = 40;
L-SSM w/ SSC: 2.28 mm; ASM in [13]: 2.82 mm). The results also confirm our
initial hypothesis that the Patch-AAM fitting algorithm performs better with
a locality-based SSM and SAM (L-AAM in Tab. 1). Nearly all results reported
for L-AAM are significantly better (see Tab. 1; paired t-tests with p < 0.05)
than those obtained by L-SSM. However, improvements when using the SSC
descriptor are less prominent or even not existent. The exact reason for this
behavior remains unclear and is subject to further research. Computationally,
Patch-AAMs are efficient (0.5–6 s to process an image on a six-core Xeon CPU).

4 Conclusion

In this paper, a flexible framework for patch-based active appearance model-
ing that elegantly combines strengths of AAMs and CLMs is presented. Patch-
AAMs consist of global shape and appearance models whose parameters are
jointly optimized during the efficient segmentation procedure. The often insuffi-
cient generalization abilities of those global models are tackled by incorporating
and extending a recent approach for learning representative SSMs from small
training populations to patch-based appearance modeling. Our experiments on
publicly available data show that our framework leads to competitive segmenta-
tion results for challenging multi-object problems even when only few training
samples are available. Furthermore, the evaluation shows that our framework
is able to make use of structural image representations like image descriptors

2 www.imi.uni-luebeck.de/en/content/representative-patch-based-appearance-models
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Fig. 2. Illustration of segmentation results (colored contours) for Patch-AAM variants
on both data sets (left: JSRT; right: Cardiac). Black/White contours: ground-truth.
Please note the improved coverage of local details by the L-AAM approach.

in addition to raw gray values. Although being only applied to 2D data in this
work, the approach is not limited to 2D and readily generalizes to 3D cases.
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