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Abstract. Convolutional neural networks (CNNs) have been success-
fully used for fast and accurate estimation of dense correspondences be-
tween images in computer vision applications. However, much of their
success is based on the availability of large training datasets with dense
ground truth correspondences, which are only rarely available in medical
applications. In this paper, we, therefore, address the problem of CNNs
learning from few training data for medical image registration. Our con-
tributions are threefold: (1) We present a novel approach for learning
highly expressive appearance models from few training samples, (2) we
show that this approach can be used to synthesize huge amounts of realis-
tic ground truth training data for CNN-based medical image registration,
and (3) we adapt the FlowNet architecture for CNN-based optical flow
estimation to the medical image registration problem. This pipeline is
applied to two medical data sets with less than 40 training images. We
show that CNNs learned from the proposed generative model outperform
those trained on random deformations or displacement fields estimated
via classical image registration.

1 Introduction

Image registration is one of the most important tasks in many medical image
processing applications, e.g. for atlas-based segmentation, motion analysis or
monitoring of growth processes, and therefore a variety of non-linear registration
approaches have been proposed over the past three decades [15].

Inspired by the remarkable success of convolutional neural networks (CNNs)
for image classification, a number of CNN-based approaches have been proposed
to tackle image registration/optical flow problems in (mostly) computer vision.
One line of research is to integrate CNN-based correspondence matching into
registration/optical flow methods [16,11], while others successfully learned sim-
ilarity metrics [14]. Recently, Dosovitskiy et al. [4] rephrased the dense optical
flow problem in computer vision as a regression task, learned by CNNs in an
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Fig. 1. Overview of the proposed model-based data augmentation approach.

end-to-end manner. Their CNN (FlowNet) is able to estimate dense deformation
fields from pairs of 2D images at high frame rates and with competitive accuracy.

The success of CNNs for classification tasks heavily relies on the availability of
large annotated training populations. However, for real world image registration
problems, dense ground truth correspondences are rarely available and their
manual generation is usually infeasible. In computer vision [4], this problem is
overcome by the generation of synthetic data sets using 3D CAD models and
(photorealistic) rendering. This approach is difficult to transfer to the medical
field, and the lacking availability of training images of a certain kind is an even
bigger challenge. This paper addresses two problems in training CNNs for image
registration tasks: missing ground truth correspondences, and a small number of
available training images. We aim to generate a large and diverse set of training
image pairs with known correspondences from few sample images.

The usual approach to cope with few training samples is data augmentation.
A discussion and comparison of augmentation techniques for shape modeling
is given in [17]. In the context of machine learning data augmentation aims to
enforce invariance of a learner to certain geometric deformations or appearance
features by applying random transformations to the samples during the learning
process, and, hence to improve its generalization abilities. This is a key aspect
for performance improvements in recent classification and segmentation systems
[12,2]. Most data augmentation schemes are manually specified, i.e. a set of
geometry and intensity transformations is defined for which the task at hand is
believed to be invariant, e.g. affine transformations, noise, and global changes
in brightness, see e.g. [7,4]. To learn invariance related to elastic distortions, so
far mostly unspecific random deformations are applied (i.e. in U-Net [12]). Only
few data-driven augmentation techniques with transformations learned from the
training data exist [10,6]. For example, in [6], non-linear transformations are
learned to estimate probabilistic class-specific deformation models.

The absence of sufficiently large training populations and the unspecific data
augmentation approaches currently available prevent the use of CNN-based im-
age registration approaches like FlowNet for medical applications. We, there-
fore, propose a novel approach for learning representative shape and appearance
models from few training samples, and embed this in a new model-based data
augmentation scheme to generate huge amounts of ground truth data. Compared
to [12] this allows us to synthesize more specific data and in contrast to [6] our
approach also seamlessly integrates appearance related data augmentation.
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The contribution of this paper is threefold: (1) A recent approach for shape
modeling from few training samples [17] is extended to appearance modeling. (2)
We show that this approach can be used to synthesize huge amounts of realistic
ground truth training data for CNN-based medical image registration. (3) We
adapt the FlowNet architecture to two medical image registration problems and
show its potential to outperform state-of-the-art registration methods.

2 Methods

The training of CNNs requires huge amounts of training data, e.g. in [4] ∼ 22000
image pairs with dense ground truth are used to train FlowNet. Thus, the central
goal of our approach is to generate many pairs of synthetic (but realistic) images
(Ĩi, Ĩj) with associated ground truth deformations φi→j , i.e. Ĩj ≈ Ĩi ◦φi→j , from
few real samples. Basically, our approach learns a statistical appearance model
(SAM) [3] from the available training images and applies this model to synthesize
an arbitrary number of new images with varying object shape and appearance
(see Fig. 1). A common problem of classical SAMs is the limited expressiveness as
the dimension of the model space is usually restricted by the number of available
training images. Therefore, our appearance model adapts a recently published
approach for building representative statistical shape models (SSMs) from few
training data [17]. This allows us to generate highly flexible SAMs from few real
samples. We begin by briefly describing statistical appearance models (SAMs),
followed by our adaption of the approach presented in [17].

2.1 Statistical appearance models

Given are a set of n training images I1, . . . , In; Ii : Ω → R, Ω ⊂ R2, and for
each image Ii a set of m landmarks si = [si,1, . . . , si,m]T ∈ R2m with si,r =
[xi,r, yi,r]

T . These landmarks describe the shape of the object(s) of interest and
are assumed to be in correspondence across the population and normalized using
Procrustes analysis [3]. To generate the shape model from the shape vectors si,
the mean shape s0 and the orthonormal shape basis PS = (p1| . . . |pk) given by
the first k < n eigenvectors of the data covariance matrix CS are calculated.
New shapes can now be generated using normally distributed shape parameters
wj ∼ N(0, λj) with the variance λj equal to the corresponding eigenvalue:

ŝ = s0 +

k∑
j=1

wjpj . (1)

The appearance model of a SAM is defined with respect to the mean shape s0,
i.e. each training image Ii is shape normalized by warping the shape vector si
to s0. We use a multi-level B-spline scattered data approximation [8] to define
the non-linear warp ϕi and choose a number of levels that fulfill maxr ‖s0,r −
ϕi(si,r)‖ < ε. In our experiments this approach leads to visually more realistic
deformations compared to thin-plate-splines [3] or piecewise-affine warps [9].
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The appearance covariance matrix CA is computed from the shape normalized
images Ii ◦ ϕi sampled at positions xj ∈ Ω0. A PCA results in a mean image

I0 and eigenimages PA = (A1| . . . |Aκ) defining the appearance model Î = I0 +∑κ
j=1 γjAj . Again, the appearance parameters γj are assumed to be normally

distributed and we can generate new image instances by (1) sampling shape
parameters to define the shape ŝ and calculating the inverse warping function
ϕ̂−1, (2) sampling appearance parameters to generate Î, and (3) warping the
image Ĩ = Î ◦ ϕ̂−1. However, SAMs strongly suffer from the high-dimension-low-
sample-size (HDLSS) problem because the dimension of the embedding space is
high (∼ number of pixels and landmarks) compared to the number of training
images. This results in a limited generalization ability and thus hampers their
applicability in the intended deep learning scenario.

2.2 Locality-based statistical shape and appearance models

Recently, a new approach to tackle the HDLSS problem of SSMs was proposed
[17]. This locality-based approach assumes that local shape variations have lim-
ited effects in distant areas. To measure the distance dist(·, ·) between landmarks
simple euclidean or geodesic contour distances can be used, but more elaborate
distances incorporating prior knowledge and multi-object scenarios are also pos-
sible (see [17]). To enforce the locality assumption during model generation a
distance threshold τ is defined and the correlation of distant landmark positions
s̄i ,s̄j of the mean shape is set to zero:

Rτ = {ρ}i,j with ρi,j =

{
cov(s̄i,s̄j)
σiσj

, if dist(s̄i, s̄j) < τ

0, else
. (2)

Here, Rτ denotes a correlation matrix related to the modified covariance matrix
Cτ = (diag(C))1/2Rτ (diag(C))1/2. Finally, the eigenvectors of Cτ form a new
shape basis Pτ . For small thresholds τ , each eigenvector tends to reflect only local
shape variations present in the training set, and because rank(Ĉτ )� rank(C)
now a large number k > n of eigenvectors can be selected for shape modeling in
Eq.(1). The manipulation of the correlation matrix (instead of directly changing
the covariances) will preserve the total variability in the training set.

By selecting a set of thresholds τ1 > τ2 > . . . > τl, a single multi-level
shape model can be build that incorporates shape variations at different levels
of locality. Let span(Pτ1) = P1 ∈ G(k1, 2m) and span(Pτ2) = P2 ∈ G(k2, 2m)
the subspaces of two locality-models (G(ki, 2m) denotes a Grassmann manifolds)
the k2-dimensional subspace nearest to P2 containing P1 is sought (k2 ≥ k1):

P1+2 = arg min
P∈G(k2,2m)

dG(k2,2m)(P,P2) subject to P1 ⊆ P , (3)

Here, dG(k2,2m)(·, ·) denotes a geodesic distance between subspaces. The basis
vectors of P1+2 and the associated eigenvalues can be efficiently computed as
shown in [17]. By successively solving Eq.(3) for the remaining levels of locality
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Fig. 2. Exemplary illustration of both data sets and the data augmentation approaches.
Top row: LBPA40 brain data with ground truth labels (1st image). Bottom row: Image
pairs of the cardiac MRI data with overlayed deformations generated by the data
augmentation approaches (random deformations and the novel model-based approach).

τ3, . . . , τl, a subspace P1+2+...+l, which includes global as well as very local shape
variations is found (see [17] for details).

In [17], this locality-based approach is only defined for SSMs. Here, we extend
it to appearance models, by using the Euclidean distance between sampling
positions xj ∈ Ω0 in the image plane and associated threshold ϑ1 > ϑ2 > . . .
to enforce uncorrelated image intensities in Eq.(2). To define the thresholds for

multiple resolution levels, we found ϑ1 = maxi,j ‖xi − xj‖, ϑi = ϑi−1

2 to be a
reasonable choice where the number of levels depends on the required locality.

2.3 Model-based data augmentation for learning image registration

The locality-based shape and appearance model defined in Sec. 2.2 elegantly
combines global and local variabilities in a single model, described by shape
vectors, eigenimages, and the associated eigenvalues. Assuming Gaussian dis-
tributions for the shape and appearance parameters, we can directly apply the
method described in Sec. 2.1 to generate new random images. The shape vectors
ŝi and ŝj associated with the random samples Ĩi and Ĩj are used to compute
the dense deformation φi→j by a multi-level B-spline approximation [8], see Sec.
2.1. Clearly, the accuracy of this deformation decreases with increasing distance
from landmarks, which will be discussed in Sec. 3.

3 Experiments and Results

Data. To our knowledge, dense 3D registration with CNNs is currently com-
putationally infeasible, and we, therefore, use two 2D inter-patient registration
problems for our evaluation.
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Brain MRI: We extract corresponding transversal slices from affinely pre-
registered image volumes of 40 patients of the LPBA40 data set [13]; see Fig.
2 for examples. For each 2D image 100 landmarks on the brain contour and
12 inner brain landmarks are defined for shape modeling. The average Jaccard
overlap of 20 brain structures is used to assess the registration accuracy.

Cardiac MRI: We extract end-diastolic mid-ventricular short-axis slices from
32 cine MRI images [1]. Shape correspondences are defined by 104 landmarks
located on left ventricle (LV) epicardium, and right+left ventricle endocardium.
For the evaluation we compute average symmetric contour distances for the
RV+LV endocard and LV epicard contours.

Experimental setup. There are only few approaches for CNN-based end-to-
end training for dense image registration, and currently, FlowNet [4] is the best
known among these. Therefore, the pre-trained FlowNet-S is used as starting
point for all CNN experiments, followed by a fine-tuning with ground truth im-
age pairs generated as detailed below. We adapted the data augmentation steps
included in the FlowNet architecture to fit our image data (e.g. by removing color
manipulations) 1. The general goal of the 3 experiments conducted, is to inves-
tigate our initial hypotheses that (1) fast CNN-based registration can achieve
competitive accuracy on medical data given sufficient training data, and that
(2) the proposed data-driven, model-based augmentation approach outperforms
available generic, but highly unspecific methods.

FlowNet-Reg: In this experiment, we define ground truth deformation fields
by an affine landmark-based pre-registration followed by a diffeomorphic vari-
ational non-linear registration of all training image pairs. Pairwise registration
will result in n(n−1) image pairs, which might be not sufficient for training if n
is small. The chosen registration method is freely available in the ITK framework
and among the best performing methods on LPBA40 (see [5] for parameters).

FlowNet-Random: Dense smooth random deformations as suggested in [12]
are applied to all training images, and combined with smooth local brightness
changes. With this approach, an arbitrary number of image pairs with known
ground truth can be generated, but both images of each pair are deformed ver-
sions of the same input image (see Fig. 2) and the deformations are unspecific.

FlowNet-SAM: The proposed locality-based shape and appearance model
(see Sec. 2.2) is applied to generate image pairs and corresponding ground truth
deformation as detailed in Sec. 2.3. The multi-object distance suggested in [17]
with 4 (Brain)/3 (Cardiac) levels of locality is used for SSM generation.

The accuracy of the multi-level B-spline deformations used to infer dense
displacement fields from landmark correspondences in Sec. 2.1 decreases far away
from landmarks, and this results in a blurred appearance model in these regions
as visible in Fig. 2. One solution is to spread landmarks over the whole image
region, however, this is impractical in many applications. Instead, we adapt
FlowNet and use a weighted loss function during training, with weights of 1
inside the objects (e.g. heart) that decrease to 0 far away from the contour.

1 Architecture and trained weights: http://imi.uni-luebeck.de/node/1019
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Table 1. Results of the experiments on both data sets. Given are mean Jaccard coef-
ficients (Brains)/ contour distances in mm (Cardiac) over 5-folds with respect to the
ground truth segmentations/landmarks. Shown is FlowNet trained on 4 data sets. Pre-
trained: trained on synthetic chair data (see [4]); Reg: fine-tuned on VarReg (training
data). Random: random deformations; SAM: data augmentation using the proposed
models. Note the different number of training samples (2nd, 4th column). Superscripts
indicate statistically significant differences to FlowNet SAM (�:p < 0.01, ?:p < 0.001).

Brains (Jaccard) Cardiac (contour dist.)
Method # train mean(±std) # train mean(±std)

Before Reg 0.460 ± 0.063? 6.163 ± 2.472?

VarReg (training data) 0.563 ± 0.053 2.250 ± 0.755
VarReg (test data) 0.562 ± 0.051� 3.437 ± 2.427?

FlowNet (pre-trained) 22232 0.507 ± 0.053? 22232 8.171 ± 6.981?

FlowNet-Reg 945 0.547 ± 0.049? 600 3.053 ± 0.910?

FlowNet-Random 9698 0.505 ± 0.077? 9698 7.785 ± 5.430?

FlowNet-SAM 9572 0.568 ± 0.042 9572 2.670 ± 0.930

Results. A 5-fold cross-validation is applied for all experiments on both image
data sets. To compute a baseline accuracy, variational registration is applied
to the test data without any landmark information for the brain images and
using heart ROI masks for the cardiac data. Note that cardiac inter-patient reg-
istration is very challenging for intensity-based registration methods due to the
large anatomical variations between patients (see Fig. 2). The results are sum-
marized in Tab. 1 and show that FlowNet trained with model-generated data
(FlowNet-SAM ) outperforms all other methods with high significance (paired t-
test, p < 0.001, except for brain images p < 0.01). The registration of one image
pair (256× 256) needs 0.05s on the GPU. FlowNet-Random and FlowNet-SAM
were trained with ca. 10000 samples, which in our experiments was found to be
a lower bound. The Jaccard coefficients for the brain scenario of the registration
method and FlowNet-SAM are comparable to the 3D values of state-of-the-
art methods [5]. Interestingly, for the difficult cardiac registration problem (see
VarReg results), pre-trained FlowNet fails, which might suggest that the filters
learned on the synthetic chair data (see [4]) are useless in this scenario. Fine-
tuning with the proposed approach, however, greatly improves the results. As
assumed, fine-tuning with random deformations does not provide much mean-
ingful information for medical data, resulting in poor registration accuracy.

4 Discussion and Conclusion

In this work, we propose the use of CNN-based image registration for medical
image data and present a novel model-based data augmentation scheme to allow
for deep learning on small training populations. The results of our evaluation
confirm our initial hypotheses that CNN-based registration can achieve competi-
tive accuracy on medical data and that the proposed model-based augmentation
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approach outperforms unspecific augmentation schemes. We can furthermore
show that simple but specific fine-tuning of the FlowNet architecture designed
and pre-trained for/with completely different data gives surprisingly good re-
sults. We, therefore, strongly believe that CNN-based image registration has the
potential to outperform state-of-the-art medical image registration methods in
the future. Currently, FlowNet is limited to 2D registration problems. However,
this limitation does not apply to the proposed data augmentation approach,
which readily generalizes to 3D.
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