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Abstract. Breathing-induced location uncertainties of internal structures are
still a relevant issue in radiation therapy of thoracic and abdominal tumours.
Motion compensation approaches like gating or tumour tracking are usually
driven by low-dimensional breathing signals, which are acquired in real-time
during the treatment. These signals are only surrogates of the internal motion
of target structures and organs at risk, and, consequently, appropriate models
are needed to establish correspondence between the acquired signals and the
sought internal motion patterns. In this work, we present a diffeomorphic
framework for correspondence modelling based on the Log-Euclidean framework
and multivariate regression. Within the framework, we systematically compare
standard and subspace regression approaches (principal component regression,
partial least squares, canonical correlation analysis) for different types of common
breathing signals (1D: spirometry, abdominal belt, diaphragm tracking; multi-
dimensional: skin surface tracking). Experiments are based on 4D CT and
4D MRI data sets and cover intra- and inter-cycle as well as intra- and inter-
session motion variations. Only small differences in internal motion estimation
accuracy are observed between the 1D surrogates. Increasing the surrogate
dimensionality, however, improved the accuracy significantly; this is shown for
both 2D signals, which consist of a common 1D signal and its time derivative,
and high-dimensional signals containing the motion of many skin surface points.
Eventually, comparing the standard and subspace regression variants when
applied to the high-dimensional breathing signals, only small differences in terms
of motion estimation accuracy are found.

Keywords: Respiratory motion, Motion estimation, Correspondence modelling,
Breathing surrogates, Regression, Image registration, Radiotherapy

1. Introduction

Breathing-induced organ and tumour motion introduces a major source of uncertainty
during radiotherapy treatment of thoracic and abdominal tumours (Keall et al 2006).
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Motion compensation techniques like respiratory gating (Kubo & Hill 1996) or tumour
tracking (Schweikard et al 2000) require precise information about the location and
motion of internal structures. Direct and continuous monitoring of these structures
is, however, hardly feasible in clinical practise. As a consequence, gating and tracking
approaches currently rely on (mainly externally acquired) breathing signals of so-called
surrogates of the internal motion, which are eventually used to infer the position of the
internal structures of interest by patient-specific correspondence models (McClelland
et al 2013).

The correspondence models can be roughly characterized by three components:
a surrogate, an internal motion representation, and a mathematical description of
their assumed relationship. Concerning the first aspect and the given application
context, breathing surrogates are, for example, abdominal belts and spirometry devices
(Keall et al 2006). These surrogates provide only one-dimensional breathing signals.
Bearing in mind that the signal dimensionality determines the degrees of freedom
of the correspondence model, the resulting models can be considered as being over-
restrictive in the given context. This motivates the use of multi-dimensional breathing
signals, like range images of the moving skin surface (Schaller et al 2008). Internal
motion representations, the second component of a correspondence model, range from
displacements of only selected points of interest (Schweikard et al 2000, Cerviño et al
2010) over parameters of parametric transformations (Martin et al 2013) to dense

displacement fields (Zhang et al 2007, Li et al 2011). The probably most frequent
representation are dense displacement fields, which are regarded as a convenient way
to describe the potentially complex non-linear motion/deformation of the tumour and
organs at risk and can be derived from treatment planning 4D CT or MR image
sequences by non-linear registration. Addressing the correspondence modelling itself,
the last component of a correspondence model, again several approaches can be found
in the literature (see, e.g., the overview by McClelland et al (2013)). The probably
most common approach in the context of radiation therapy is to assume a linear
relationship between the breathing signal and the internal motion; cf. (Schweikard et
al 2000, Cerviño et al 2010, Martin et al 2013, Klinder et al 2010) as examples.

In this work, we address the following aspects: If a correspondence model is
built on dense displacement fields as internal motion representation, there is usually
no guarantee that transformations derived by the model are diffeomorphic (globally
one-to-one, differentiable, invertible with differentiable inverse). This holds for both
interpolation (signal measurement inside range of the training surrogate data), and
especially for extrapolation scenarios. However, restricting the transformations to
diffeomorphisms is a natural choice in the given context to ensure the topology
of the internal structures to be preserved (Beg et al 2005). With this goal in
mind, we introduce a diffeomorphic framework for surrogate-based motion estimation,
which exploits the Log-Euclidean framework (Arsigny et al 2006) to perform
statistics on diffeomorphisms, here for multivariate regression between the surrogate
signals and dense diffeomorphic transformations representing the internal motion
(Werner et al 2012a). To tackle the problem arising from correlated dimensions of
high-dimensional surrogates, we further incorporate subspace regression approaches
(principal component regression, partial least squares, canonical correlation analysis)
in addition to a standard ordinary least squares regression (Wilms et al 2013). Besides
these methodical aspects, what has been missing so far is a systematic comparison of
the different multivariate regression approaches and common surrogates. Therefore,
this work aims also to provide an extensive evaluation of the performance of these



Surrogate-based diffeomorphic respiratory motion estimation 3

methods and surrogates with the focus lying on lung motion estimation. Such an
evaluation requires an appropriate amount of ground truth patient (4D) image data
and corresponding breathing signal measurements, which unfortunately are rarely
acquired in current clinical practise. Given 4D CT and 4D MRI data sets, our idea
was to generate and use image-based simulations of breathing signals. For evaluation
purposes, standard measures known from registration evaluation are applied to obtain
a fair comparison between different models and scenarios of intra- and inter-cycle as
well as intra- and inter-session motion variations.

2. A diffeomorphic framework for surrogate-based motion estimation

In the following, we briefly describe the theoretical background of our diffeomorphic
surrogate-based motion estimation framework introduced in (Werner et al 2012a,
Wilms et al 2013). For model training, we assume a 4D image data set (Ij)j∈{1,...,nph}
consisting of nph 3D images Ij : Ω→ R (Ω ⊂ R3) representing the patient’s anatomy at
breathing phases j is given. Moreover, let (ζj)j∈{1,...,nph} denote a set of corresponding
surrogate measurements ζj ∈ Rnsur with dimension nsur. The first step in training a
correspondence model is to determine the internal motion represented by non-linear
transformations ϕj : Ω→ Ω between an arbitrary reference breathing phase (here: I1)
and each Ij . As we want to define a diffeomorphic framework, the ϕj are computed
using a diffeomorphic registration scheme.

2.1. Diffeomorphic image registration

In general, a diffeomorphic transformation ϕ : Ω → Ω is a differentiable bijective
mapping with a differentiable inverse ϕ−1 (Ehrhardt et al 2011). Given the transport
equation

∂

∂t
φt (x) = v (φt (x) , t) with φ0 (x) = x and t ∈ [0, 1] , (1)

and a time-dependent, sufficiently smooth velocity field v : Ω × [0, 1] → R3, which
parameterises the flow φ : Ω× [0, 1]→ Ω, the sought diffeomorphic transformation ϕ
is the solution of (1) at time t = 1 (Dupuis et al 1998, Beg et al 2005). However,
registration algorithms based on time-varying velocity fields typically suffer from high
computational and memory cost (Beg et al 2005). Therefore, Arsigny et al (2006)
proposed using a stationary velocity field instead, resulting in a solution of (1) given by
ϕ (x) = φ1 (x) = exp (v (x)). The group exponential map exp (v (x)) needed here can
be computed by the efficient scaling and squaring algorithm (Arsigny et al 2006). This
approach restricts ϕ to a subgroup of diffeomorphisms (Arsigny et al 2006, Ehrhardt
et al 2011). Nevertheless, previous studies comparing non-stationary and stationary
parameterisations of diffeomorphisms in the context of medical image registration
revealed that this limitation does not significantly influence the registration accuracy
(Ashburner 2007, Hernandez et al 2009, Vercauteren et al 2009).

Relying on this theoretical framework, we are interested in finding a diffeomorphic
transformation ϕj = exp (vj) between the reference image I1 and an arbitrary target
image Ij at breathing phase j ∈ {1, . . . , nph} that minimizes the energy functional

J [vj ] = D [I1, Ij ◦ ϕj ] + αS [vj ] . (2)

Here, D denotes a dissimilarity measure and S is a regularisation term that guarantees
the smoothness of the velocity field. In our diffeomorphic registration scheme, a



Surrogate-based diffeomorphic respiratory motion estimation 4

diffusive regulariser and so-called normalized SSD forces are employed. Additional
details are provided in (Schmidt-Richberg et al 2010).

2.2. Diffeomorphic correspondence modelling

Given diffeomorphic transformations (ϕj)j∈{1,...,nph}, computed with the registration
approach described in section 2.1, and corresponding surrogate measurements ζj ∈
Rnsur as training data, our goal is to learn a diffeomorphic correspondence model
that describes their relationship using multivariate linear regression. The standard
approach would be to represent the internal motion by the displacement fields
(uj)j∈{1,...,nph}, with ϕj = id+ uj : Ω→ Ω, see, e.g., (Klinder et al 2010). However,
transformations generated by performing classical linear statistics on displacement
fields cannot be guaranteed to be diffeomorphic because the space of diffeomorphisms
is not linear (Arsigny et al 2006, Ehrhardt et al 2011). Therefore, our framework uses
a subgroup of diffeomorphisms parametrized by stationary velocity fields (cf. section
2.1). These velocity fields form a linear space (the tangent space at identity), which
allows us to perform vectorial statistics on diffeomorphisms (Arsigny et al 2006). No
additional calculations are required, as these velocity fields are computed as part of
our registration scheme.

2.2.1. Diffeomorphic multivariate regression by ordinary least squares (OLS) From
here on, the velocity fields vj and surrogate measurements ζj are interpreted as random
variables Vj ∈ R3m and Zj ∈ Rnsur , where m denotes the number of voxels of image
Ij . Then, the basis form of our diffeomorphic correspondence model is defined by

V̂ = V + B(Ẑ− Z) , (3)

which generates a velocity field V̂ for a given breathing signal observation Ẑ with
V = 1/nph

∑nph

j=1 Vj and Z = 1/nph
∑nph

j=1 Zj . After mean centering the random

variables (Vc
j = Vj − V and Zc

j = Zj − Z), matrices V := (Vc
1, . . . ,V

c
nph

) and

Z := (Zc
1, . . . ,Z

c
nph

) are formed to estimate the coefficient matrix B ∈ R3m × Rnsur

required in (3) in an ordinary least squares (OLS) sense by performing a multivariate
linear regression (Hastie et al 2009):

BOLS = arg min tr
B′

[
(V −B′Z)(V −B′Z)T

]
= VZ+ . (4)

Here, matrix Z+ represents the Moore-Penrose pseudoinverse of the nsur×nph matrix
Z. Following Albert (1972), two possible ways of calculating Z+ are

Z+ = ZT (ZZT )−1 and (5)

Z+ = (ZTZ)−1ZT . (6)

In (5) it is assumed that Z has full row rank, whereas in (6) the columns of Z have
to be linearly independent. However, in our context, at least the assumption of (5) is
frequently violated by high-dimensional surrogates (e.g., range images), which often
contain perfectly correlated dimensions. Therefore, in our implementation, the non-
invertibility of covariance matrix ΣZZ = ZZT and ZTZ is avoided by approximating
them with ΣZZ + γI and ZTZ + γI, (γ > 0), respectively. This is known as
ridge regression or Tikhonov regularisation (Hastie et al 2009). For computational
efficiency, we choose (5) if nph ≥ nsur and (6) if nsur > nph.
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For a ridge regression, the choice of a suitable regularization parameter γ is
rather heuristic, and several authors proposed using subspace approaches instead.
These methods aim at revealing the low-dimensional hidden structure of the high-
dimensional surrogate data via dimensionality reduction, cf. (Klinder et al 2010, Gao
et al 2008, Liu et al 2010) as examples of use in the given context.

2.2.2. Principal component regression (PCR) Principal component regression (PCR)
is standard linear regression with a dimensionality reduction based on principal
components analysis (PCA) performed on the surrogate measurements first (Jolliffe
2002, Klinder et al 2010). Therefore, singular value decomposition Z = UDWT

is applied to determine a unitary matrix U of the left-singular vectors of Z and a
diagonal matrix of corresponding singular values D. Now, the idea of PCR is to use
only the first nc left-singular vectors Unc with positive singular values to approximate
ΣZZ by Unc(DT

nc
Dnc)UT

nc
. This leads to a coefficient matrix

BPCR = ΣVZUnc(DT
nc

Dnc)−1UT
nc
, (7)

where matrix ΣVZ = VZT represents the cross-covariance between V and Z and only
a diagonal matrix needs to be inverted.

2.2.3. Partial least squares (PLS) In PCR, Unc defines a subspace of maximum
variation of the surrogate data, without taking the structure of the internal motion
data into account. It is therefore not guaranteed that the dimensionality reduced
surrogate data contains information that is useful for the estimation of the internal
motion. Partial least squares (PLS) tries to circumvent this problem by searching
for orthonormal bases Unc

:= (u1, . . . ,unc
) and Pnc

:= (p1, . . . ,pnc
), consisting of

pairs ui and pi that maximize the cross-covariance ρi = uT
i ΣZVpi. As detailed in

(Borga et al 1997), the basis vectors sought are solutions of a generalized eigenvalue
problem, which can be efficiently solved by the non-linear iterative partial least squares
algorithm (NIPALS). Having determined a new basis Unc

this way, a new coefficient
matrix is defined as

BPLS = ΣVZUnc(UT
nc

ΣZZUnc
)−1UT

nc
. (8)

2.2.4. Canonical correlation analysis (CCA) The canonical correlation analysis
(CCA) has much in common with PLS, but instead of searching for new basis vectors
ui and pi that maximize the cross-covariance between the projected data sets, CCA

maximizes their correlation ρi =
uT

i ΣZVpi√
uT

i ΣZZuipT
i ΣVVpi

. Again, solving a generalized

eigenvalue problem leads to the sought vectors ui and pi (Borga et al 1997). However,
this time the inverse of covariance matrix ΣZZ (and ΣVV) is required. We therefore
perform a PCA on V and Z first, to reduce their dimensionality as suggested by Gao
et al (2008). Given the new basis Unc

, the coefficient matrix is calculated in the same
fashion as BPLS :

BCCA = ΣVZUnc
(UT

nc
ΣZZUnc

)−1UT
nc
. (9)
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Figure 1. Sample 3D MRI image of a 4D MRI data set for illustration of the
highly anisotropic spatial resolution of 3.91 × 10 × 3.91 mm (RL, AP, HF): (a)
coronal slice, (b) sagittal slice, (c) axial slice.

3. Study Design

3.1. Image Data

For our evaluation, 34 publicly available and proprietary 4D image data sets from
different modalities (CT & MRI) are used:

• 12 4D CT data sets of lung cancer patients taken from our in-house database
with an average spatial resolution of 1 × 1 × 1.5 mm (right-left (RL), anterior-
posterior (AP), head-foot (HF)). They were acquired during free breathing and
each 4D data set consists of 3D images reconstructed at 10 to 14 breathing phases
as described in (Ehrhardt et al 2007).

• 10 4D CT data sets with 10 breathing phases and a spatial resolution of
0.97 − 1.16 × 0.97 − 1.16 × 2.5 mm (RL, AP, HF) publicly available from the
DIR-Lab, The University of Texas M. D. Anderson Cancer Center, USA (Castillo
et al 2009).

• 6 4D CT data sets with 10 breathing phases and a spatial resolution of
0.879 − 1.172 × 0.879 − 1.172 × 2 mm (RL, AP, HF) publicly available from the
Léon Bérard Cancer Center & CREATIS lab, Lyon, France (Vandemeulebroucke
et al 2011).

• 3 4D CT and 4D MRI data sets of lung cancer patients acquired at the German
Cancer Research Center (DKFZ), Heidelberg, Germany. For each of the 3
patients, a 4D CT and a 4D MRI data set were acquired. Each 4D CT data
set consists of 7 3D images with a spatial resolution of 0.977×0.977×1.5−3 mm
(RL, AP, HF). The 4D MRI data sets consist of 157 3D images acquired during
free breathing with a temporal resolution of 0.5 s and a spatial resolution of
3.91× 10× 3.91 mm (RL, AP, HF). Figure 1 shows a sample MRI image.

3.2. Simulated types of surrogates

Using the 4D images described above, we simulated the subsequently described
breathing signals.

3.2.1. Spirometry Spirometry results in a common 1D (pure signal) and 2D (signal +
time derivative) breathing signal, respectively. For the 4D CT data sets, tidal volume



Surrogate-based diffeomorphic respiratory motion estimation 7

measurements are simulated by image-based analysis of the air content inside the lungs
and interpreted as spirometry measurements. This approach follows (Lu et al 2005),
in which a linear relationship between air content values inside the lungs, derived by
a 4D CT-based voxel-wise analysis of the Hounsfield units, and tidal volume has been
theoretically derived and experimentally verified. Time derivatives are approximated
by finite differences. Relying on the Hounsfield units, air content cannot be determined
for the 4D MRI data sets. For them, we approximated the entire lung volumes by lung
segmentations, which are generated by an automatic approach (Wilms et al 2012).

3.2.2. Abdominal belt Belts measure the expansion of the chest or abdomen during
respiration and also represent common 1D (only signal) and 2D (signal + time
derivative) breathing signals. We simulate a belt signal by measuring the body volume
over a small number of slices (≈ 1 cm of the skin surface) in the abdominal region. The
corresponding body volume is calculated by counting body voxels in the selected slices,
using a body segmentation generated by volume growing and subsequent hole-filling.
An optimal belt location is determined by selecting a position with a clearly visible
movement of the body during respiration. We experimentally verified the simulation
approach by using 3 patients of our in-house data base for which cine CT volumes of
the abdomen and corresponding belt measurements were available. Strong correlations
between real and simulated signals (correlation coefficient c ≥ 0.98) were observed.

3.2.3. Diaphragm translation The motion of the diaphragm is a direct indicator of
respiratory motion and can be tracked in real-time in several ways (e.g., fluoroscopy,
MRI navigators) (Cerviño et al 2010). For this study, 1D (only signal) and 2D
(signal + time derivative) breathing signals are generated consisting of the average
translation of the dome of the left and right hemi-diaphragm in cranio-caudal direction.
The positions of the domes over time in a selected coronal slice of the 4D data sets
are automatically determined with sub-voxel accuracy by edge detection.

3.2.4. Range imaging (RI) As a typical multi-dimensional surrogate signal, we
simulate a range image-based tracking of the raising/lifting of the chest wall and
the abdominal skin. Therefore, we position a virtual range imaging sensor above
the patient’s body. Rays that start at nsur points of the assumed sensor plane
are followed until they intersect with the body in anterior-posterior direction. The
intersection is determined with sub-voxel accuracy using a grey value threshold and
linear interpolation. Due to the low spatial resolution, the 4D MRI data sets are first
resampled to the spatial resolution of the corresponding 4D CT data sets to allow
an improved detection of the skin surface. Six different spatial sampling patterns
of a rectangular region of interest are simulated: nsur = 1 point located over the
xiphoid process, nsur = 1 point centrally located over the position of the belt, and
nsur = 10, 100, 1000, 10000 equally spread points.

3.3. Experiments

Considering the dimensionality of the different breathing signals, we evaluated
the following regression approach/surrogate combinations: OLS (with Tikhonov
regularisation) with all breathing signals. PCR, PLS, and CCA, each combined with
the simulated multi-dimensional range images with nsur = 10, 100, 1000, 10000 points.
The evaluation procedures are described subsequently.
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3.3.1. Evaluation based on 4D CT data sets For the 4D CT data sets a leave-
out evaluation strategy is applied. Selecting the phase at end-inspiration (EI) as a
reference for intra-patient registration and correspondence-modelling, three different
models are built for each data set and regression/surrogate combination. To evaluate
the extrapolation power of the approaches (signal measurement out of the range of the
training data), one model is trained on all phases, but the phases at EE-1, EE (end
expiration), and EE+1, and is used to estimate the motion ϕ̂EE between EI and EE.
The two interpolation models are evaluated by leaving out the phases at mid-expiration
(ME) and mid-inspiration (MI) during training and estimating the corresponding
transformations ϕ̂ME and ϕ̂MI . The accuracy of the estimated transformations is
evaluated by computing the mean target registration error (TRE) based on manually
defined corresponding inner-lung landmarks. For our own data sets, on average 70
equally distributed landmarks per patient and 4 selected breathing phases (EE, EI,
MI and ME) are available. The DIR-Lab and CREATIS data sets are provided with
300 (DIR-Lab) and 100 (CREATIS) landmarks for the images at EI and EE. Therefore,
the extrapolation models are built for all 28 4D CT data sets available, whereas the
interpolation capabilities are only evaluated on our own data sets.

3.3.2. Evaluation based on 4D MRI data sets As each of the three 4D MRI data
sets consists of 157 3D MRI images and 20-30 complete breathing cycles, separate
subsets of the data are used for training and evaluation. The training data for each
patient consists of two selected average respiratory cycles, allowing for inter- and
extrapolation cases during the evaluation using all remaining data. A landmark-
based evaluation is not possible for the 4D MRI data due to the low spatial resolution
of the images. Instead, we use the distance between available lung segmentations
to assess the accuracy of the motion estimation between the reference phase and all
remaining phases in the evaluation subset. For this purpose, the lung segmentations
of the phases in the evaluation subset are warped to the reference phase by applying
the estimated transformations. Subsequently, the mean symmetric distances between
points on the surface of the reference segmentation and points on the surface of the
warped segmentations are computed. Then, a patient-specific mean value is calculated
by averaging the mean surface distances of the phases in the evaluation subset.

3.3.3. Evaluation based on 4D CT & 4D MRI data sets The 4D CT and 4D MRI data
pairs are used to simulate and evaluate a possible clinical workflow. This workflow
comprises learning a correspondence model on a 4D CT data set acquired for treatment
planning, which is then used for surrogate-based motion estimation during treatment.
Here, the 4D MRI data sets only serve as ground truth data for evaluation, meaning
that the different correspondence models trained on the 4D CT data are used to
estimate the motion in the corresponding 4D MRI data set. As the CT and MRI
data sets were acquired during different sessions with different scanners, an alignment
is needed to account for differences in the position of the lungs in CT and MRI
space. For this alignment, a reference phase in the 4D MRI data representing a
breathing state similar to that of the reference phase in the 4D CT data (EI) is chosen.
Similarity is determined using the lung volume available from the lung segmentations.
Next, an affine transformation ϕaff between the EI CT and MRI lung segmentations
is estimated by a surface-based ICP registration. Using this affine transformation,
displacement fields estimated by a correspondence model can be warped from the
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model space (CT) to the MRI space. For evaluation, the same methods and measures
are applied as described for the 4D MRI-based experiments.

3.3.4. Comparison of standard and diffeomorphic correspondence modelling To
illustrate the advantages of our diffeomorphic modelling approach, additional standard
correspondence models (i.e., the regression is directly performed between displacement
fields and surrogate data; cf. section 2.2) are built for our twelve proprietary 4D CT
data sets, the three 4D CT and 4D MRI data pairs and all surrogates. The models
are compared with respect to the motion estimation accuracy (measures as before)
and the number of singularities in the motion fields.

3.3.5. Parameters and implementation details Depending on the regression
approach, different parameters have to be determined during correspondence
modelling: For Tikhonov regularisation of (4) the parameter γ is required to be
chosen, and all subspace approaches depend on the number of components nc used for
dimensionality reduction. These parameters are determined on a patient-/regression
approach-/experiment-specific level by a leave-one-out cross validation on the training
data, considering the Euclidean distance between simulated and left out velocity fields
as quality measure. For all experiments, lung segmentations are used to restrict
the registration and regression-based modelling approaches to the lung regions to
save memory/computation time and to prevent potential sliding motion between the
visceral and parietal pleura from affecting the lung motion estimation.

4. Results

The results of the experiments described in section 3.3 are listed in tables 1 and 2
and are detailed in the following subsections. The overall mean values (± standard
deviation) reported in table 1 were calculated by averaging the patient-specific mean
target registration errors (4D CT data sets) and the patient-specific mean surface
distances (4D MRI data sets) for each experiment. Paired t-tests with a signficance
level of 5% (p < 0.05) were performed by pairing the patient-specific mean values
in order to assess the statistical significance of differences in the overall mean
values between different surrogates, regression approaches, and scenarios. Table 2
additionally lists the corresponding patient-specific mean values of the 4D MRI and
4D CT & 4D MRI experiments and the three patients used in these experiments,
respectively. To determine statistical significane of the differences on a patient-specific
level, t-tests were this time performed by pairing the mean surface distances of the
≈130 phases of each patient’s evaluation subset.

4.1. Motion estimation accuracy using 1D surrogate signals

Comparing the motion estimation accuracy achieved in all three experiments (4D CT,
4D MRI, 4D CT & 4D MRI; scenarios analysed independently) with standard OLS
regression as reported in table 1, almost no statistically significant differences (p > 0.05
for the landmark-based TRE values/mean surface distances) are observed between
the use of the simulated 1D breathing signals. Two exceptions exist: Considering
only the 4D CT scenarios, tracking the skin surface point located over the xiphoid
process (RI 1 point xiphoid) leads to a significantly decreased motion estimation
accuracy in comparison to all other surrogates (p < 0.05). Furthermore, the difference
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Table 1. Landmark-based mean target registration errors (4D CT) and mean
lung surface distances (4D MRI and 4D CT & 4D MRI), obtained for the
surrogate-based estimation of lung motion for the different image data sets,
regression approaches, and surrogates. The mean observer error for the landmarks
provided with the proprietary and DIR-Lab 4D CT data sets is 0.92± 0.34 mm.
This (intra-)observer error refers to landmark position differences after repeated
manual (i.e., performed by a human observer) landmark transferring from EE to
EI. The final goal would be to end up with TRE values in the order of or below
the observer errors. All listed values are mean values (± standard deviation)
over the patients’ mean values obtained in the individual experiments. 4D-CT:
Interpolation performed for 12 patients and 2 phases (mean values are calculated
by averaging the MI & ME results of all 12 patients), Extrapolation performed for
28 patients (only EE phases are used). 4D MRI and 4D CT & 4D MRI: Results
are averaged over 3 patients and ≈ 130 test images per patient (cf. section 3.3.2
and table 2).

TRE [mm] Mean Surface Distance [mm]

4D CT 4D MRI 4D CT & 4D MRI
Motion Estimation Inter-/Extrapolation

No motion estimation 3.59± 1.46/7.59± 2.72 2.81± 1.54
Intra-Patient-Registration 1.52± 0.15/1.40± 0.49 1.12± 0.42

Surrogate-based motion estimation using BOLS and 1D surrogate = . . .

Spirometry 1.87± 0.31/2.05± 0.85 1.31± 0.51 1.94± 1.16
Belt 1.94± 0.32/2.03± 0.82 1.40± 0.54 2.00± 1.19
Diaphragm 1.90± 0.32/2.01± 0.88 1.27± 0.50 2.13± 1.25
RI 1 point belt pos. 1.92± 0.27/2.08± 0.91 1.46± 0.62 2.31± 1.31
RI 1 point xiphoid pos. 2.18± 0.66/3.76± 2.02 1.58± 0.54 2.17± 0.75

Surrogate-based motion estimation using BOLS and 2D (1D+ time derivative) surrogate = . . .

Spirometry 1.73± 0.19/1.96± 0.81 1.28± 0.50 1.88± 1.08
Belt 1.72± 0.19/1.98± 0.73 1.37± 0.52 1.94± 1.08
Diaphragm 1.74± 0.19/2.04± 0.86 1.24± 0.48 2.23± 1.46
RI 1 point belt pos. 1.72± 0.17/2.04± 0.84 1.38± 0.58 2.31± 1.27
RI 1 point xiphoid pos. 2.25± 0.71/3.12± 1.91 1.52± 0.59 2.56± 1.20

Surrogate-based motion estimation using BOLS and RI surrogate with . . .

10 points 1.74± 0.21/2.12± 0.86 1.44± 0.59 1.99± 0.89
100 points 1.71± 0.22/1.86± 0.63 1.41± 0.57 2.01± 0.89
1000 points 1.71± 0.20/1.88± 0.59 1.40± 0.56 1.94± 0.80
10000 points 1.80± 0.35/2.02± 0.68 1.40± 0.56 1.95± 0.81

Surrogate-based motion estimation using BPCR and RI surrogate with . . .

10 points 1.74± 0.20/2.36± 1.49 1.48± 0.62 1.99± 0.88
100 points 1.71± 0.23/1.87± 0.61 1.41± 0.58 1.97± 0.82
1000 points 1.68± 0.19/1.87± 0.61 1.40± 0.57 1.96± 0.81
10000 points 1.69± 0.20/1.82± 0.62 1.40± 0.56 1.96± 0.82

Surrogate-based motion estimation using BPLS and RI surrogate with . . .

10 points 1.73± 0.20/2.25± 1.16 1.48± 0.61 2.00± 0.89
100 points 1.70± 0.24/1.86± 0.61 1.41± 0.57 1.96± 0.82
1000 points 1.68± 0.19/1.79± 0.59 1.40± 0.56 1.96± 0.81
10000 points 1.69± 0.20/1.79± 0.59 1.39± 0.56 1.96± 0.82

Surrogate-based motion estimation using BCCA and RI surrogate with . . .

10 points 1.75± 0.20/2.22± 0.86 1.45± 0.66 2.21± 1.15
100 points 1.77± 0.23/2.04± 0.96 1.34± 0.52 2.10± 1.01
1000 points 1.72± 0.19/2.02± 0.91 1.32± 0.51 1.98± 0.84
10000 points 1.72± 0.19/1.88± 0.67 1.48± 0.42 1.97± 0.83
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Table 2. Patient-specific mean lung surface distances obtained for the surrogate-
based estimation of lung motion for the 4D MRI and 4D CT & 4D MRI
experiments. Given are the mean values (± standard deviation) of the patient-
specific mean surface distances averaged over ≈ 130 phases per patient (cf. section
3.3.2 and table 1).

Mean Surface Distance [mm]

4D MRI 4D CT & 4D MRI
Motion Est. Patient 1 / Patient 2 / Patient 3 Patient 1 / Patient 2 / Patient 3

No motion est. 1.47± 0.47 / 2.46± 0.60 / 4.49± 1.19
Intra-Patient-Reg. 0.70± 0.12 / 1.13± 0.20 / 1.54± 0.16

Surrogate-based motion estimation using BOLS and 1D surrogate = . . .

Spirometry 0.77± 0.13 / 1.38± 0.26 / 1.77± 0.17 1.00± 0.26 / 1.57± 0.36 / 3.24± 0.46
Belt 0.78± 0.12 / 1.64± 0.33 / 1.77± 0.15 1.00± 0.25 / 1.68± 0.31 / 3.32± 0.62
Diaphragm 0.77± 0.13 / 1.26± 0.26 / 1.76± 0.16 1.01± 0.28 / 1.89± 0.20 / 3.48± 0.70
RI 1 pt. belt pos. 0.77± 0.11 / 1.65± 0.39 / 1.97± 0.38 1.12± 0.23 / 2.11± 0.47 / 3.71± 0.87
RI 1 pt. xiph. pos. 1.07± 0.32 / 1.55± 0.33 / 2.14± 0.52 1.72± 0.75 / 1.74± 0.34 / 3.03± 0.34

Surrogate-based motion estimation using BOLS and 2D (1D+ time derivative) surrogate = . . .

Spirometry 0.75± 0.13 / 1.33± 0.26 / 1.74± 0.15 1.01± 0.27 / 1.55± 0.32 / 3.09± 0.43
Belt 0.77± 0.13 / 1.59± 0.32 / 1.74± 0.12 1.01± 0.25 / 1.67± 0.30 / 3.13± 0.52
Diaphragm 0.76± 0.13 / 1.26± 0.26 / 1.71± 0.13 1.27± 0.23 / 1.51± 0.28 / 3.91± 0.90
RI 1 pt. belt pos. 0.76± 0.12 / 1.48± 0.30 / 1.90± 0.34 1.15± 0.20 / 2.10± 0.46 / 3.66± 0.82
RI 1 pt. xiph. pos. 0.98± 0.29 / 1.44± 0.28 / 2.14± 0.55 1.95± 0.84 / 1.78± 0.32 / 3.95± 0.84

Surrogate-based motion estimation using BOLS and RI surrogate with . . .

10 points 0.76± 0.12 / 1.75± 0.39 / 1.82± 0.23 1.20± 0.27 / 1.81± 0.34 / 2.95± 0.45
100 points 0.75± 0.13 / 1.74± 0.40 / 1.74± 0.15 1.20± 0.29 / 1.86± 0.48 / 2.96± 0.42
1000 points 0.75± 0.13 / 1.71± 0.39 / 1.74± 0.15 1.22± 0.30 / 1.79± 0.41 / 2.80± 0.38
10000 points 0.75± 0.13 / 1.70± 0.39 / 1.74± 0.15 1.22± 0.30 / 1.80± 0.43 / 2.82± 0.38

Surrogate-based motion estimation using BPCR and RI surrogate with . . .

10 points 0.77± 0.12 / 1.85± 0.42 / 1.82± 0.23 1.20± 0.28 / 1.83± 0.40 / 2.93± 0.41
100 points 0.75± 0.13 / 1.75± 0.41 / 1.74± 0.13 1.21± 0.30 / 1.86± 0.49 / 2.83± 0.39
1000 points 0.75± 0.13 / 1.71± 0.39 / 1.74± 0.15 1.22± 0.30 / 1.81± 0.44 / 2.83± 0.38
10000 points 0.75± 0.13 / 1.71± 0.39 / 1.74± 0.15 1.23± 0.30 / 1.80± 0.43 / 2.85± 0.38

Surrogate-based motion estimation using BPLS and RI surrogate with . . .

10 points 0.77± 0.12 / 1.85± 0.42 / 1.81± 0.23 1.20± 0.28 / 1.83± 0.40 / 2.97± 0.42
100 points 0.75± 0.13 / 1.74± 0.40 / 1.74± 0.14 1.21± 0.30 / 1.85± 0.44 / 2.83± 0.39
1000 points 0.75± 0.13 / 1.71± 0.39 / 1.74± 0.14 1.22± 0.30 / 1.82± 0.45 / 2.83± 0.38
10000 points 0.75± 0.13 / 1.70± 0.39 / 1.74± 0.16 1.23± 0.30 / 1.80± 0.36 / 2.85± 0.38

Surrogate-based motion estimation using BCCA and RI surrogate with . . .

10 points 0.76± 0.12 / 1.51± 0.30 / 2.09± 0.43 1.22± 0.27 / 1.94± 0.42 / 3.48± 0.68
100 points 0.77± 0.14 / 1.48± 0.34 / 1.78± 0.17 1.21± 0.29 / 1.89± 0.49 / 3.20± 0.46
1000 points 0.75± 0.13 / 1.48± 0.33 / 1.73± 0.14 1.22± 0.30 / 1.84± 0.45 / 2.88± 0.42
10000 points 0.99± 0.23 / 1.71± 0.39 / 1.73± 0.15 1.23± 0.30 / 1.81± 0.42 / 2.86± 0.42
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Figure 2. Three different simulated breathing signals (Lung volume, Belt signal,
RI 1 point at the xiphoid position) for one patient with a length of 78.5 s.
Simulations are based on a 4D MRI data set consisting of 157 3D images. All
signals are normalized to the range [0, 1]. The lung volume and belt signal are
highly correlated (correlation coefficient c = 0.91), while the correlation between
lung volume/belt signal and the translation of the skin surface at the xiphoid
position is weak (c = 0.25 / c = 0.11).

between tracking the point located over the belt and evaluating diaphragm motion was
statistically significant for the combined 4D CT & 4D MRI experiment (p = 0.046).

Thus, in general the results suggest that only slight differences in motion
estimation accuracy exist between the signals, as also illustrated in figure 2. However,
there exist differences between the patients included in our study. As an example,
for case 02 of the CREATIS 4D CT data and using tidal volume as surrogate,
an underestimation of the motion amplitude can be seen when compared to the
displacement field estimated via intra-patient registration (cf. figure 3). In this case,
using the diaphragm translation as surrogate visibly reduces the underestimation.
Further patient-specific differences are also revealed by the detailed results of the 4D
MRI and 4D CT & 4D MRI experiments listed in table 2. For patient 01, all 1D
surrogate signals lead to nearly equivalent results (except for the RI 1 point xiphoid)
for the 4D MRI experiment, while in the case of patient 02 the accuracy obtained by
the diaphragm tracking is significantly better than the results of all other 1D signals
(p < 0.05). Interestingly, the corresponding results are different for the combined
4D CT & 4D MRI experiments. Here, the spirometry surrogate allows for the most
accurate motion estimation for patient 02, and even the accuracy of the RI 1 xipoid
surrogate is significantly higher than the diaphragm result. For patient 03, the RI 1
xiphoid surrogate, leading to the worst accuracy in the 4D MRI experiment, is the best
1D surrogate in the 4D CT & 4D MRI experiment, with the differences between all 1D
surrogates being significant (p < 0.05). These patient-specific differences between 4D
MRI and combined 4D CT & 4D MRI experiments can be interpreted as suggesting
that the models built using our framework are only able to compensate for some of
the occuring inter-session motion variability. However, please note that this specific
part of our analysis is based on only a small number of patients (=3) and related
conclusions have to be verified for a larger data set (cf. section 5).

4.2. Motion estimation accuracy using 2D surrogate signals

As expected, in most instances the use of a 2D surrogate signal (1D signal + time
derivative) and standard OLS regression leads to an improved estimation accuracy
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(a) Intra-patient registration
TRE: 1.36 mm

(b) OLS Spirometry
TRE: 4.17 mm

(c) OLS Diaphragm translation
TRE: 2.02 mm

Figure 3. Visualization of the lung motion between EI and EE for case 02 of
the CREATIS 4D CT data sets estimated by intra-patient registration (a) and
surrogate-based motion estimation relying on spirometer-determined tidal volume
(b) and diaphragm translation (c).

(a) Intra-patient registration
TRE: 1.40 mm

(b) OLS RI 1 point belt pos.
TRE: 2.53 mm

(c) OLS RI 1000 points
TRE: 2.00 mm

Figure 4. Visualization of the lung motion between EI and EE for patient
05 of our proprietary 4D CT data sets estimated by intra-patient registration
(a) and surrogate-based motion estimation driven by a 2D signal consisting of
the translation of 1 skin surface point located at the belt position and its time
derivative (b, OLS regression) and 1000 equally spread points (c, OLS regression).

compared to the 1D results. This can be seen especially in case of the 4D CT
interpolation scenarios (cf. table 1), for which, in addition, the reported differences
are statistically significant (p < 0.05, except for the RI 1 point xiphoid signal with
p = 0.56), indicating that models relying on multi-dimensional surrogate signals are
able to account for intra-cycle motion variations like hysteresis. Furthermore and
similar to the 1D signal findings, the related differences between the individual 2D
signals are not statistically significant (p > 0.05) again with the exception of the
results obtained for the RI 1 point xiphoid surrogate during the 4D CT experiments
(p < 0.01).

4.3. Motion estimation accuracy using high-dimensional RI surrogate signals

The results of the standard OLS approach reported in table 1 show the potential of
using a high-dimensional surrogate signal, which contains the motion of 10 to 10000
equally spread skin surface points instead of only one point (w/o the time derivative),
here located at the xiphoid or belt position. However, when comparing the results
of the RI 1 point belt signal in table 1 to the OLS results obtained using 10 to
10000 points, only the differences reported for the 4D CT interpolation scenarios are
statistically significant (p < 0.05). But even these significant differences diminish or
vanish when using the 1D signal with its time derivative (=2D signal) in most cases.
Moreover, the differences between the best combinations of the OLS approach with a
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high-dimensional RI surrogate signal for each experiment (e.g., 4D CT extrapol.: 100
points) and the results of the 2D signals (except for the RI 1 point xiphoid signal)
in table 1 are not statistically significant (p > 0.05). But there are again patients
for which larger differences occur (cf. figure 4 and table 2). For example, the results
achieved for patient 02 in the 4D MRI experiments by using the 2D surrogate signals
are all significantly better than any result obtained by combining the OLS approach
with a high-dimensional RI surrogate.

Our results also show that for the OLS method and both 4D CT scenarios
at some point increasing the number of surface points significantly decreases the
estimation accuracy, presumably because of overfitting (e.g., 4D CT interpol.: 1000
points vs. 10000 points, 1.88 ± 0.59 vs. 2.02 ± 0.68, p = 0.02). In this case, the
subspace approaches show their potential. However, most of the differences between
the OLS results shown in table 1 and the results of the subspace-based models are not
statistically significant (p > 0.05). In addition, the differences between the subspace
approaches themselves are generally not significant with some exceptions involving the
CCA method and again patient-specific differences. For example, the CCA method
combined with 100 or 1000 points turns out to be the best subspace approach for
patient 2 when looking at the results for the 4D MRI experiments.

To sum up, our results suggest that (1) using subspace approaches might not be
necessary in general and (2) using more sophisticated methods like PLS and CCA
instead of PCR might also not be required. The latter suggestion is also supported
by the nearly similar number of components (< 5) used by each approach on average.

4.4. Standard vs. diffeomorphic correspondence modelling

The results of the comparison of standard and diffeomorphic correspondence
modelling are summarized in table 3. The differences in accuracy between both
approaches are generally very small and only the differences obtained for the 4D
CT interpolation scenarios with BOLS and spirometry as surrogate are statistically
significant (Interpolation: p < 0.05; Extrapolation: p = 0.34). In contrast to
the standard models, the diffeomorphic correspondence models successfully avoid
singularities in the estimated displacement fields even in the case of extrapolation for
the 4D CT experiments. For some of the 4D MRI and 4D CT & 4D MRI experiments,
a very small number of singularities can also be found in displacement fields estimated
by the diffeomorphic modelling approach. These singularities are caused by very large
and unusual extrapolation factors (>4, usually factors < 3), which are a consequence
of a short period of coughing (4D MRI experiments) and, in case of the combined 4D
CT & 4D MRI experiments, also due to the limited number of training samples (one
4D CT data set) and the difficult compensation of baseline differences between the
surrogate signals simulated for both modalities.

Formally speaking, the large extrapolation factors eventually lead to velocity
fields, which are – at least for the applied configuration of the scaling and squaring
algorithm (fixed number of 6 scaling and squaring operations) – non-sufficiently
smooth and violate the premises of the underlying theory. For a more detailed
discussion on this specific issue please refer to (Werner et al 2012b). Despite
the occasional presence of singularities in the displacement fields resulting from the
diffeomorphic modelling approach, it has to be noted that their number is much smaller
than for the corresponding standard models. This, still, illustrates the advantage of
the proposed modelling approach.
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Table 3. TRE values/mean surface distances and number of singularities
(voxels x with det∇ϕ̂(x) < 0) for the displacement fields resulting from either
diffeomorphic or standard surrogate-based estimation of lung motion. Values are
given for the 4D CT interpolation and extrapolation scenarios (evaluated using
our twelve proprietary 4D CT data sets), the 4D MRI experiments, the combined
4D CT & 4D MRI scenarios (cf. section 3.3.2) and different surrogate signals
(cf. table 1); Listed are the averaged values of the patient mean values and the
corresponding standard deviations. Presence of singularities is only evaluated for
inner-lung voxels (cf. section 3.3.5; 4D CT: on avg. ≈ 300000 inner-lung voxels;
4D MRI: on avg. ≈ 30000 inner-lung voxels).

4D CT
Interpolation Extrapolation

Motion estimation approach TRE [mm] Singularities TRE [mm] Singularities

Diffeomorphic framework:

BOLS & Spirometry 1.87± 0.31 0 1.84± 0.45 0
BOLS & Belt 1.94± 0.32 0 1.79± 0.34 0
BOLS & RI 1000 points 1.71± 0.20 0 1.67± 0.29 0

Standard framework:

BOLS & Spirometry 1.86± 0.30 0 1.83± 0.44 0.33± 1.15
BOLS & Belt 1.93± 0.32 0 1.80± 0.34 109.58± 357.53
BOLS & RI 1000 points. 1.70± 0.20 0 1.69± 0.28 29.75± 71.90

4D MRI 4D CT & 4D MRI

Motion estimation approach Mean Surf. Singularities Mean Surf. Singularities
Dist. [mm] Dist. [mm]

Diffeomorphic framework:

BOLS & Spirometry 1.31± 0.51 0 1.93± 1.16 0.13± 0.22
BOLS & RI 1 point xiphoid pos. 1.58± 0.54 0.03± 0.05 2.17± 0.75 0.30± 0.36
BCCA & RI 10000 points 1.48± 0.42 0 1.97± 0.83 1.81± 3.14

Standard framework:

BOLS & Spirometry 1.29± 0.49 0.61± 1.06 1.90± 1.13 257.93± 442.30
BOLS & RI 1 point xiphoid pos. 1.57± 0.52 15.46± 26.77 2.15± 0.72 245.27± 252.48
BCCA & RI 10000 points 1.46± 0.40 3.97± 6.65 1.95± 0.81 472.04± 644.89

4.5. Computation times

All experiments presented here were performed on a standard PC equipped with an
Intel W3520 2.67GHz CPU and 24GB RAM. Given a set of velocity fields and a
sampled breathing signal, the computation time required for model training depends
on several factors: regression approach, dimensionality of the surrogate signal, size
of the velocity fields, and the number of phases used, which determines the number
of cross-validations performed (cf. section 3.3.5). Average computation times for the
current implementation of the algorithms to build, e.g., the 4D CT-based models range
from ≈ 1 minute (OLS, 1D spirometry, 7 training phases) to ≈ 60 minutes (PLS, RI
10000 points, 13 training phases). The time for generation of a new velocity field for a
given signal measurement is < 1 second. The subsequent application of the scaling and
squaring algorithm to compute the corresponding displacement field takes approx. 10
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seconds. Current implementations are not runtime-optimized. However, at least the
time needed for model building should be of minor importance for most applications
in radiotherapy as this would usually be done offline during treatment planning.

5. Discussion and Conclusion

Respiratory motion compensation methods in radiotherapy of thoracic and abdominal
tumours are usually guided by breathing signals of so-called surrogates of the internal
motion. In this work, we presented a diffeomorphic framework for surrogate-based
motion estimation, which relies on the Log-Euclidean framework and multivariate
regression. Besides standard ordinary least squares regression, we also investigated
the use of different subspace regression variants to train diffeomorphic correspondence
models. The regression approaches were compared for different types of common
(simulated) breathing signals within the proposed framework using evaluation
measures known from registration evaluation and ground truth patient 4D image data
sets covering intra- and inter-cycle as well as intra- and inter-session motion variations.

The results of our study focusing on lung motion estimation showed only small
differences in estimation accuracy between the different 1D surrogates. The only
exception were breathing signals generated by tracking a skin surface point located
over the xiphoid process, which turned out to be not suitable for reliable surrogate-
based motion estimation. Furthermore, we found out that the estimation accuracy
can be significantly increased by increasing the surrogate dimensionality. This was
shown for 2D signals consisting of a common 1D signal and its time derivative, and
high-dimensional signals containing the motion of many skin surface points. Most
differences between results obtained by the standard OLS and subspace regression
approaches for the high-dimensional signals were not significant. Therefore, using
subspace approaches instead of the standard OLS regression might not be necessary
in general but can help to avoid or reduce overfitting in case of very high-dimensional
signals (e.g., 10000 skin surface points). It was striking that most of the significant
differences between surrogates and/or regression approaches were only observable for
experiments involving the 4D CT data sets. This is most likely a result of the limited
number of 4D MRI data sets available (only 3) and their low spatial resolution, which
prevented a more detailed evaluation of inner-lung motion estimation accuracy.

We additionally compared diffeomorphic correspondence models trained using
the proposed framework with standard (non-diffeomorphic) correspondence models,
which rely on displacement fields instead of velocity fields. It was shown that our
diffeomorphic approach avoids singularities that are present in the displacement fields
computed within the non-diffeomorphic setting, while it still maintains the accuracy
of the standard modelling approach.

Although our results indicate that on average most of the surrogates considered
here are equally suitable for motion estimation purposes, patient-specific differences
exist. Therefore, surrogate simulations and the proposed framework could be used to
determine optimal patient-specific surrogates (+ positions) during treatment planning.

A limitation of our study is that the results are solely based on simulated surrogate
signals. Therefore, the accuracy of the motion estimation also depends on the accuracy
of the simulations, which is highly influenced by the quality and spatial resolution of
the images used. Furthermore, with this approach, we completely ignore any device-
specific characteristics (e.g., noise) one would have to account for in clinical practise.

Our future work will therefore focus on the following aspects: First, we plan to
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verify the simulations of the range-imaging-based surrogate signals by comparing them
to real measurements. This will include the incorporation of device-specific noise into
the simulation framework and an analysis of the influence of noise on the estimation
accuracy. Furthermore, the evaluation of the estimation accuracy in the presence
of intra- and inter-session breathing variations needs to be extended by including
more patients and an increased number of 4D MRI image data sets with ideally a
higher spatial resolution. We are further thinking about extending our studies by
incorporation of additional image information sources like 4D cone-beam CT or kV
fluoroscopy acquired during radiotherapy treatment of lung tumour patients. Such
information could help to overcome some limitations of especially the considered 4D
CT scenarios: 4D CT data sets are actually reconstructed from data acquired over
several breathing cycles. This leads to the problem that we are (potentially) modelling
relationships between information coming from different cycles in our experiments.
Moreover, no direct inter-cycle variability analyses are possible on the basis of the
reconstructed volumes; they would require repeated 4D CT imaging, which is hardly
feasible due to additional dose exposure to the patient. The other information sources
mentioned above, however, have their own specific disadvantages (4D cone-beam CT:
currently low image quality; kV fluoroscopy: only 2D+time information) and are at
the moment rarely acquired in clinical routine. Acquisition and incorporation of such
information would, nevertheless, be one further step towards clinical practise. This
would finally be in line with our next goal, which is is to incorporate surrogate-based
information about breathing motion variations into 4D dose calculation (Werner et al
2012a, Werner et al 2012c).

Acknowledgments

This work is supported by the German Research Foundation DFG (HA 2355/9-2).

References

Albert A 1972 Regression and the Moore-Penrose Pseudoinverse Academic Press.
Arsigny V, Commowick O, Pennec X & Ayache N 2006 A log-Euclidean framework for statistics on

diffeomorphisms Proc. MICCAI 2006 4190, 924–931.
Ashburner J 2007 A fast diffeomorphic image registration algorithm. Neuroimage 38(1), 95–113.
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