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Abstract

Statistical shape models learned from a population of previously observed training shapes are nowadays widely used in medical
image analysis to aid segmentation or classification. However, providing an appropriate and representative training population of
preferably manual segmentations is typically either very labor-intensive or even impossible. Therefore, statistical shape models
in practice frequently suffer from the high-dimension-low-sample-size (HDLSS) problem resulting in models with insufficient
expressiveness.

In this paper, a novel approach for learning representative multi-resolution multi-object statistical shape models from a small
number of training samples that adequately model the variability of each individual object as well as their interrelations is presented.
The method is based on the assumption of locality, which means that local shape variations have limited effects in distant areas
and, therefore, can be modeled independently. This locality assumption is integrated into the standard statistical shape modeling
framework by manipulating the sample covariance matrix (non-zero covariances between distant landmarks are set to zero). To
allow for multi-object modeling, a method for computing distances between points located on different object shapes is proposed.
Furthermore, different levels of locality are introduced by deriving a multi-resolution scheme, which is equipped with a method
to combine variability information modeled at different levels into a single shape model. This combined representation of global
and local variability in a single shape model allows the use of the classical active shape model strategy for model-based image
segmentation.

An extensive evaluation based on a public data base of 247 chest radiographs is performed to show the modeling and segmentation
capabilities of the proposed approach in single- and multi-object HDLSS scenarios. The new approach is not only compared to the
classical shape modeling method but also to three state-of-the-art shape modeling approaches specifically designed to cope with the
HDLSS problem. The results show that the new approach significantly outperforms all other approaches in terms of generalization
ability and model-based segmentation accuracy.
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1. Introduction

When applied to segmentation tasks in medical imaging, typ-
ical low-level segmentation algorithms that only explore local
image information (e.g. gray values or image gradients) often5

fail to produce reasonably accurate results due to factors such
as image noise, modality-related image artifacts, neighboring
structures exhibiting similar gray value characteristics, or the
presence of pathologies that all lead to missing or misleading
boundary information and, hence, prohibit sufficient success of10

basic algorithms. To overcome this problem, model-based seg-
mentation approaches are now widely used in medical image
analysis, which aim at robustifying the segmentation process
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23538 Lübeck, Germany

Email address: wilms@imi.uni-luebeck.de (Matthias Wilms)
This is a preprint version of the MedIA article, which (slightly) differs from

the final publication available at Elsevier via http://dx.doi.org/10.1016/
j.media.2017.02.003

by incorporation of a-priori information about the object of in-
terest’s shape (and appearance).15

Starting with the introduction of simple shape matching ap-
proaches in the early 1980s, model-based segmentation has
been an active field of research and various approaches utiliz-
ing different types of prior information, modeling strategies and
ways to use the prior information during segmentation have20

been developed (Jain et al., 1998). One of the most influen-
tial approaches is the active shape model (ASM) method pro-
posed by Cootes et al. (1995). The key component of the ASM
method is a statistical shape model (SSM) that compactly rep-
resents the space of plausible shapes of an object class (shape25

space) by a mean shape and a variability model learned from
a population of class instances provided as training data. Dur-
ing segmentation, the SSM is employed to constrain the result
to plausible shapes. Throughout the years, ASM-like methods
and other methods based on SSMs have been successfully used30

to solve many different segmentation tasks arising in medical
imaging (see (Heimann and Meinzer, 2009) for an overview).

When building a statistical shape model based on a given
population of training shapes, one first needs to decide on a
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proper representation of the data. A simple but yet generic,35

flexible, and widely used idea is to represent a shape as a set
of points (landmarks) distributed across its surface. Statistical
shape models utilizing such a point-based shape representation
are usually called point distribution models (PDMs) (Cootes
et al., 1992). In this framework, a SSM is then build by (1) rep-40

resenting the points of each training shape in a corresponding
shape vector, (2) computing a mean shape, and (3) perform-
ing a principal components analysis (PCA) by computing the
eigenvectors of the sample covariance matrix of all vectorized
training shapes to obtain a compact model that best describes45

the shape variability observed in the training data.
The basic point-based modeling approach proposed by

Cootes et al. is not only applicable to single-object shape mod-
eling (e.g., one organ) but can also be used to build multi-object
shape models, which capture the variability of multiple individ-50

ual structures and their spatial relations. This can be achieved
without any modifications to the modeling scheme, shape vec-
tors of different objects only need to be concatenated. Those
multi-object models can then be employed to simultaneously
segment the individual structures. Compared to the use of sev-55

eral single-object shape models to successively segment differ-
ent but related structures, these multi-object shape models have
the potential to enhance the robustness of the segmentation pro-
cess as the relations between the structures are encoded in the
model and, thus, can provide additional valuable information60

to guide the segmentation. Multi-object shape models built by
employing this technique have been successfully used in sev-
eral applications such as the segmentation of multiple struc-
tures in thoracic radiographs (van Ginneken et al., 2006), neu-
roanatomic structures in brain MRI (Duta and Sonka, 1998),65

and heart structures in cardiac MRI (Lötjönen et al., 2004).
To sum up, a SSM provides a compact representation of the

shape space of an object/multiple objects of interest derived
from a population of observed training instances, which can
subsequently be used as prior information to guide segmenta-70

tion algorithms. The quality of the resulting model, i.e. the
correctness of the learned shape space, is related to the quantity
and quality of the training data used.

In medical applications, collecting an adequately large and
representative training population of (preferably) manual seg-75

mentations is often laborious and challenging, particularly if
dimensionality (= number of points) and complexity of the ob-
served objects increase – something which is especially true
when it comes to multi-object modeling. Therefore, SSMs typi-
cally suffer from the so-called high-dimension-low-sample-size80

(HDLSS) problem: Many landmarks are required to accurately
describe the shapes while the number of training samples is lim-
ited. For segmentation tasks, this results in a limited flexibility
of the model and details can not be represented adequately be-
cause the model is over-constrained.85

1.1. Related work

Over the years, several approaches to cope with the HDLSS
problem in statistical shape modeling have been proposed. In
(Cootes and Taylor, 1995), additional variability is introduced

by augmenting the sample covariance matrix with informa-90

tion from vibrational modes of simple finite element models
(FEMs) of the training shapes that describe physically moti-
vated deformations of the data available. In addition to the
question whether these FEM-related deformations are charac-
teristic for the biological variability of a specific object of in-95

terest, the choice of the parameter used to control the amount
of FEM-related variability added to the model is quite impor-
tant but non-trivial. Koikkalainen et al. (2008) present several
other techniques for an artificial enlargement of the training set
such as a non-rigid movement algorithm, which randomly ap-100

plies smooth local deformations to the training shapes. Their
key finding is that both the FEM-based approach of Cootes and
Taylor (1995) and their random non-rigid movement technique
outperform all other approaches tested and give comparable re-
sults in terms of segmentation accuracy on cardiac data.105

Zhao et al. (2005) presented a patch-based approach for
shape modeling based on a small number of training shapes. In
their approach, shapes are subdivided to model different parts of
an object independently to allow for a higher flexibility. How-
ever, their approach does not generate a consistent model and110

thus the consistency needs to be enforced during model appli-
cation.

Davatzikos et al. (2003) presented one of the first hierarchi-
cal shape modeling approaches. Their approach builds on the
wavelet transform that is employed to decompose 2D shapes115

into a hierarchy of different levels of details represented by dif-
ferent numbers of bands. Finally, a model is build indepen-
dently for each band to reduce the effects of the HDLSS prob-
lem. In its initial formulation, this approach is only suitable for
single-object shape modeling but it was recently generalized120

to the multi-object case by Cerrolaza et al. (2011). Further-
more, Nain et al. (2007) presented an extension of the single-
object approach to the 3D case and proposed a way to optimize
the bands by spectral partitioning. As pointed out in (Cerro-
laza et al., 2012), the original approach of Davatzikos et al.125

(2003) has two main drawbacks: the independent modeling of
each band might offer too much flexibility and the generic de-
composition scheme does not provide a way to explicitly ac-
count for inter-object relations. These drawbacks are explicitly
addressed by Cerrolaza et al. (2012, 2015) who also use the130

wavelet transform but (automatically) perform a decomposition
of the multi-object data into a hierarchy of objects/sub-objects
to explicitly characterize inter- and intra-object relations and
build shape models at each scale. From a practical point of
view, all of these wavelet-based approaches require an addi-135

tional (complex) wavelet-based shape decomposition/synthesis
step to be integrated into the segmentation algorithm, which can
be considered as a general disadvantage of them.

1.2. Contributions
In this paper, we present a novel approach for learning rep-140

resentative multi-object statistical shape models from a small
number of training samples that adequately model the variabil-
ity of each individual object as well as their interrelations. The
method is based on the assumption of locality, i.e. we assume
that local shape variations have limited effects in distant areas145
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and, hence, can be modeled independently. This locality as-
sumption is integrated into the standard statistical shape mod-
eling framework by manipulating the sample covariance matrix
(covariances between distant landmarks are set to zero). To al-
low for multi-obbject modeling, a method for computing dis-150

tances between points located on different object shapes is pro-
posed. Furthermore, different levels of locality are introduced
by deriving a multi-resolution scheme, which is equipped with
a method to combine variability information modeled at differ-
ent levels into a single shape model. This combined represen-155

tation of global and local variability in a single shape model
allows the use of the classical ASM strategy for segmentation.
To show its modeling and segmentation capabilities, this novel
approach is extensively evaluated on a public data base of chest
radiographs.160

2. Methods

This section starts by formally introducing the classical
point-based statistical shape modeling framework conceived by
Cootes et al. (1995). Based on this framework, our novel multi-
resolution, multi-object shape modeling approach is derived165

starting with the explanation of the locality assumption in Sec.
2.2, followed by the multi-resolution strategy in Sec. 2.3 and
the multi-object extension in Sec. 2.4.

2.1. Statistical shape models

From here on, we assume a set {si}
N
i=1 of N d-dimensional170

(d = 2 or 3) training shapes si to be given. Each shape
si = {~x1,i, . . . , ~x j,i, . . . , ~xM,i} is represented by a set of M points
(landmarks) ~x j,i = (x1, j,i, . . . , xd, j,i)T ∈ Rd distributed across its
surface. To allow for a meaningful statistical analysis, these
landmarks have to be in correspondence across the training pop-175

ulation and all shapes have to be aligned in a common coordi-
nate system, which can be achieved with a multitude of (reg-
istration) methods (see (Heimann and Meinzer, 2009) for an
overview). Then, the goal is to build a SSM consisting of a
mean shape and a compact variability model that adequately180

approximates the shape space (a subspace of RdM) of the object
of interest by performing a PCA of the aligned training data.

First, each training shape si is transformed into a vectorial
representation

~si = (~xT
1,i, . . . , ~x

T
j,i, . . . , ~x

T
M,i)

T , (1)

by concatenating the coordinates of each landmark. Then, the
statistical analysis starts by computing the mean shape

~µ =
1
N

N∑
i=1

~si , (2)

and the dM × dM sample covariance matrix

C =
1

N − 1

N∑
i=1

(~si − ~µ)(~si − ~µ)T , (3)

followed by an eigendecomposition C = UΛUT where the
columns of U ∈ RdM×dM are eigenvectors of C and the di-
agonal elements of diagonal matrix Λ ∈ RdM×dM denote the185

corresponding eigenvalues. Here, an eigenvector ~ui represents
a mode of variation of the training shapes and the associated
eigenvalue λi describes the variance of the training data along
its direction.

Aiming at a compact model, the dimensionality of the prob-
lem is then reduced by keeping only the eigenvectors associ-
ated with the k largest eigenvalues (= most important variation
modes) with

∑k
j=1 λ j ≥ f

∑dM
j=1 λi (assuming λ j ≥ λ j+1,∀ j), typ-

ically with f ∈ [0.95, 0.98], which corresponds to the portion
of the variability in the training set to be retained. Note that for
N < dM the rank of the covariance matrix is rank(C) < N
and that at most N − 1 non-zero eigenvalues exist. Finally,
the selected eigenvectors are concatenated in a matrix P =

(~u1|~u2| . . . |~uk) ∈ RdM×k whose columns form an orthonormal
basis of the approximated shape space. Instances of this shape
space can then be approximated by

~̂s = ~µ + P~b , (4)

where ~b ∈ Rk holds the shape parameters. For a given shape
~s, parameters optimally approximating the shape in a least-
squares sense can be computed by

~b = PT (~s − ~µ) . (5)

To allow only the generation of plausible shapes in Eq. (4),
typically the shape parameters are constrained to lie in a hyper-
rectangle

b j ≤ α
√
λ j , (6)

with α between 1 and 3.190

An active shape model (Cootes et al., 1995) combines a SSM
with a local appearance model that are together used in an iter-
ative algorithm that fits the shape model to the image. Dur-
ing segmentation, the iterative algorithm alternates between the
search for new optimal image locations for each landmark (can-195

didate points) of a shape estimated in the last iteration and con-
straining the shape formed by the new candidate points to the
space of plausible shapes by applying Eq. (5) and Eq. (4). Lo-
cally optimal image locations for each landmarks are found by
matching a landmark-specific appearance model learned from200

the training samples to the image. Traditionally, this appear-
ance model is based on the normalized image gradient along
a 1D profile orthogonal to the shape surface at the landmark
location (see (Cootes et al., 1995, 2000) for details).

2.2. Locality assumption205

In medical image analysis, SSMs oftentimes suffer from
the HDLSS problem because the number of available training
shapes is small compared to the shape dimensionality (N �
dM). This hinders the adequate learning of the underlying
shape space and leads to a reduced flexibility of the generated210

model. This problem is illustrated in Fig. 1 based on 2D hand
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Training data Test data reconstruction 
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Figure 1: Exemplary illustration of the HDLSS problem when using a classical
SSM compared to a model built by using the proposed locality-based approach.
Based on a training set of 3 hand contours, a classical SSM and a locality-based
model with 4 levels are trained and used to approximate an unseen test contour
with a combination of finger orientations not represented in the training set. The
approximations generated by the models are shown in red (dashed contour).

contours consisting of 72 landmarks made available by Timo-
thy Cootes1. This initial example clearly shows the inability of
the classical shape model to adequately represent the test shape.
This is mainly a result of the global relation between pinky and215

thumb orientations indicated by the training shapes and learned
by the shape model. In contrast, our new approach is guided
by the assumption of locality, i.e. we assume that local shape
variations have only limited influence in distant areas. A model
built on the same training shapes using our locality-based ap-220

proach is able to generate a much better approximation of the
test shape in Fig. 1.

In the standard shape modeling framework described in Sec.
2.1, the degree of (linear) relation between two landmarks ~xi

and ~x j is encoded in the associated part Ci, j = cov(~xi, ~x j) of the225

sample covariance matrix C (cf. Eq. (3)). In the following, we
will explain our modeling approach with a slight abuse of no-
tation in terms of correlations cov(~xi,~x j)

σiσ j
(with σ2

i = Ci,i) between
landmarks instead of covariances. This will allow us to easily
preserve the original variances in Eq. (9) and will become clear230

later.
We assume that the correlation between distant landmarks ~xi

and ~x j is zero and introduce this assumption into the standard
shape modeling framework. The correlation of two landmarks
~xi and ~x j is then estimated by:

ρ̌i, j =

 cov(~xi,~x j)
σiσ j

if dgeo(~xi, ~x j) ≤ τ,

0 else.
(7)

Note that for d > 1, ρ̌i, j as well as cov(~xi, ~x j), σi and σ j are
d × d sub-matrices associated with the d-dimensional point co-
ordinates. To compute Eq. (7), we have to select a threshold
τ and to define a distance dgeo(·, ·) between landmarks on the235

surface. A natural choice is to use the geodesic distance on the
mean shape of the training set, which can be easily approxi-
mated for piecewise linear shapes, e.g. triangulated surfaces or
polylines.

1http://personalpages.manchester.ac.uk/staff/timothy.f.

cootes/data/hand_data.html

All estimated matrices ρ̌i, j resulting from Eq.(7) are then or-240

ganized in a matrix Ř =

 ρ̌1,1 ... ρ̌1,M

...
. . .

...
ρ̌M,1 ... ρ̌M,M

 whose parts related to

landmarks close to each other (dgeo ≤ τ) equal the correspond-
ing sub-matrices of the original correlation matrix associated
with C while all other elements are zero. Furthermore, matrix Ř
exhibits a band-like structure, and for N � dM and a sufficient245

small threshold τ, rank(Ř) > rank(C). Note that Ř is symmet-
ric because ρ̌i, j = ρ̌ j,i but not necessarily positive semi-definite.
In this case, we project Ř to the nearest positive semi-definite
correlation matrix

R̃ = min
A
‖A − Ř‖F (8)

s. t. det(A) ≥ 0
and diag(A) = 1

using the algorithm proposed by Higham (2002).250

The local SSM for a given threshold τ is now computed by
solving the eigensystem σ1 0

. . .
0 σdM

 R̃
 σ1 0

. . .
0 σdM

 = UτΛτUT
τ , (9)

where σi are the original standard deviations of the landmark
coordinates. For small sample sizes, more than N − 1 non-
zero eigenvalues exist due to rank(R̃) > rank(C). Selection of
the largest eigenvectors, computation of shape parameters and
model fitting is performed equivalently to the classical SSM de-255

scribed in Sec. 2.1. The resulting local model is defined by a
mean shape and a set of selected eigenvectors and eigenvalues:
~µ,Pτ, ~λτ.

2.3. Multi-resolution shape modeling

By selecting different distance thresholds τ in Eq.(7), differ-260

ent levels of locality are defined for the resulting model. For
τ ≥ maxi, j dgeo(~xi, ~x j), a classical global SSM is computed and
for τ = 0 all landmarks will be assumed to be uncorrelated (re-
sulting in a useless model). By defining a sequence of thresh-
olds τ1 > τ2 > · · · > τL, a multi-resolution scheme is defined265

resulting in a set of shape models {~µ,P1, . . . ,PL, ~λ1, . . . , ~λL} (see
Fig. 2 for an illustration). However, those models are highly
dependent and redundant (cf. Fig. 2), and at first it remains
unclear how to combine the shape spaces represented by those
models into a consistent shape space approximation defined by270

one orthonormal basis and containing information from all lev-
els. Therefore, in the remainder of this section, a SSM that
combines shape information at different resolutions/levels, de-
fined by a sequence of thresholds τ1 > · · · > τL, in a single
model ~µ,PMR, ~λMR is derived. We start by defining distances275

between shape spaces/subspaces that allow us to compare the
information represented by different local models (cf. Sec.
2.3.1). These distance definitions are then used to estimate a
joint shape space (cf. Sec. 2.3.2).
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Figure 2: Illustration of thresholded correlation matrices and corresponding local shape models obtained for different distance thresholds τ (levels) when using the 3
training shapes shown in Fig. 1 with dmax = maxi, j dgeo(~xi, ~x j). For the local shape models two exemplary eigenvectors (modes) of the resulting models are shown,
which illustrate the details modelled (global and/or local) at each level and their redundancies. Please note that the model for level 1 (τ1) is the classical shape model
and only consists of 2 eigenvectors. For the first 3 levels, the first modes shown are very similar/redundant and model rather global effects. With decreasing τ, the
locality of the effects modeled by the second mode depicted for each level increases. At level 4, (nearly) complete independence of all fingers is achieved.

2.3.1. Distances between shape spaces280

The shape space spanned by the eigenvectors Pτ1 of a local
model is a subspace of RdM . Let G(k,m) be the Grassmann
manifold (Grassmannian) of linear subspaces of dimension k in
Rm. Each point A ∈ G(k,m) can be described by an orthonor-
mal matrix A ∈ Rm×k whose columns form an orthonormal ba-285

sis ofA = span(A).
Distance measures on the Grassmannian can be conveniently

defined by using the concept of principal angles (Absil et al.,
2004). Given two points A ∈ G(k,m) and B ∈ G(k,m), a se-
quence of k principal angles 0 ≤ θ1 ≤ . . . ≤ θk ≤ π/2 between
these subspaces can be recursively defined as

cos θi = max
~qi∈A

max
~pi∈B

~qT
i ~pi (10)

subject to ‖~qi‖2 = ‖~pi‖2 = 1 and ‖~qT
i ~q j‖2 = ‖~pT

i ~p j‖2 = 0, ∀ j ∈
{1, . . . , i − 1} (Absil et al., 2004). Based on the associated or-
thonormal bases A and B the principal angles can be efficiently
computed using the singular value decomposition

AT B = U(cosΘ)VT , (11)

with Θ = diag(θ1, . . . , θk). Given the principal angles, a num-
ber of different distances between subspaces can be defined (see
(Ye and Lim, 2014) for an overview). For example, the short-
est distance between A and B, measured along the geodesic in290

G(k,m) is given by dG(k,m) = ‖Θ‖F .

Let us now consider two orthonormal matrices A ∈ Rm×k

and B ∈ Rm×l defining subspaces of dimension k and l (k ≤ l),
both embedded in Rm. Distances between A ∈ G(k,m) and
B ∈ G(l,m) can be defined by finding the k-dimensional sub-295

space contained in B that is nearest to A, or by finding the
l-dimensional subspace that contains A and is nearest to B. It
was shown (see e.g. (Ye and Lim, 2014)), that the distances
defined by both approaches are equal and define a distance be-
tweenA and B. Moreover, an efficient method is given in Alg.300

1 to compute the nearest k− and l−dimensional subspaces (Ye
and Lim, 2014).

Algorithm 1 Computing nearest subspaces
Require: A ∈ Rm×k, B ∈ Rm×l with AT A = Ik×k, BT B = Il×l,

and k < l

Perform singular value decomposition:
[U(cosΘ)VT ]← svd(AT B)

Compute principal vectors betweenA and B:
(~p1|~p2| . . . |~pk)← AU
(~q1|~q2| . . . |~ql)← BV

Nearest subspace toA contained in B:
Â← (~q1|~q2| . . . |~qk)

Nearest subspace to B containingA:
B̂← (~p1| . . . |~pk |~qk+1 . . . |~ql)

Output: orthogonal bases Â ∈ Rm×k, B̂ ∈ Rm×l
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In Alg. 1, AU and BV represent rotations of the bases A
and B to minimize the angles between the first k correspond-
ing vectors.2 In the next section, the idea of Alg. 1 is used to305

compute SSMs that combine shape information from different
resolutions.

2.3.2. Building multi-resolution shape models
In order to derive the next steps, we recall the following de-

pendency: Given a data matrix X ∈ Rm×k with zero mean and
associated covariances ΣX = E(XT X) ∈ Rk×k, the covariance of
the transformed data matrix Y = XM is

ΣY = MTΣXM . (12)

Furthermore, note that from Eq. (11) follows AU =

BV(cosΘ)T and the nearest basis B̂ in Alg. 1 is given by

B̂ = BVST , (13)

where S =
(

cosΘk×k 0
0 I(l−k)×(l−k)

)
∈ Rl×l is a diagonal matrix with k

elements containing the cosine of the principal angles while the310

remaining k − l diagonal elements are filled with ones.
We now use the derived methodology to combine two lo-

cal shape models Pτ1 and Pτ2 with eigenvalues ~λτ1 and ~λτ2 and
rank(Pτ1 ) = k < l = rank(Pτ2 ) into a single model in way that
their redundancy is removed while preserving the characteristic315

unique information contained in each model as much as possi-
ble. The general idea is to use Alg.1 to compute a basis P̂τ1,τ2 of
rank l that fully contains the shape space spanned by the model
Pτ1 from level 1 and is nearest to the shape space described by
Pτ2 , the model estimated at level 2.320

Following Alg.1, we first perform a singular value decom-
position of PT

τ1
Pτ2 to obtain left- and right-singular vectors

U ∈ Rk×k and V ∈ Rl×l, and the cosines of the principal an-
gles contained in S (cf. (Eq. 13)). The combined basis P̂τ1,τ2 is
then computed using Eq. (13).325

Based on the transformed covariance matrices of both local

shape models, Σ̂τ1 =
(
στ1

i, j

)
= UT

 λτ1 ,1 0

. . .
0 λτ1 ,k

 U and Σ̂τ2 =

(
στ2

i, j

)
= VT

 λτ2 ,1 0

. . .
0 λτ2 ,l

 V, and Eq.(12), the covariances of the

basis vectors in P̂τ1,τ2 are obtained as Σ̂τ1,τ2 =
(
στ1,τ2

i, j

)
∈ Rl×l

with

στ1,τ2
i, j =


στ1

i, j if i, j ∈ [1, k] ,
στ2

i, j if i, j ∈ [k + 1, l] ,
0 else .

Here, στ1
i, j, σ

τ2
i, j, and στ1,τ2

i, j denote the scalar elements of the co-
variance matrices. Note, that due to the transformations ap-
plied, Σ̂τ1,τ2 is not diagonal in general, thus the basis vectors are
correlated. To find uncorrelated basis vectors the eigensystem
of P̂τ1,τ2 Σ̂τ1,τ2 P̂T

τ1,τ2
is computed. By iteratively repeating this330

process a shape model combining several multi-resolution lev-
els can be computed. The complete model generation process
is outlined in Alg.2 and an illustrative example can be found in
Fig. 3.

2Note, that the principal angles θi are zero for i > k.

Algorithm 2 Multi-resolution Shape Models
Require: Data matrix X = (~s1|~s2| . . . |~sN) ∈ Rm×N and distance

thresholds τ1 > τ2 > . . . > τL.
Compute mean shape: ~µ = 1

N
∑N

i=1 ~si

Define distance dgeo on mean shape
for r = 1 to L do

Compute local shape model Pτr , ~λτr according to Sec. 2.2.
if r > 1 then

Combine shape model:
U(cosΘ)VT ← svd(PT

MRPτr )
S =

(
cosΘk×k 0

0 I(l−k)×(l−k)

)
B̂ = Pτr VST (compute transformed basis)
Compute transformed covariances:

Σ̂τMR =
(
στMR

i, j

)
= UT

 λτMR ,1 0

. . .
0 λτMR ,k

 U

Σ̂τr =
(
στr

i, j

)
= VT

 λτr ,1 0

. . .
0 λτr ,l

 V

Σ̂MR,r =
(
στMR,τr

i, j

)
with

στMR,τr
i, j =


στMR

i, j if i, j ∈ [1, k] ,
στr

i, j if i, j ∈ [k + 1, l] ,
0 else .

Compute uncorrelated basis vectors and eigenvalues:
[PMR, ~λMR]← eig(B̂Σ̂MR,rB̂T )

else
PMR ← Pτr , ~λMR ← ~λτr

end if
end for

Output: Multi-resolution shape model ~µ,PMR, ~λMR
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Level 1 Level 2

Local shape models

Mode 1 Mode 2 Mode 1 Mode 3Mode 2 Mode 4

Combined shape model

Mode 1 Mode 3Mode 2 Mode 4

Figure 3: Illustration of the resulting combined multi-resolution shape model resulting from the combination of the local models obtained for distance thresholds τ1
and τ2 (cf. Fig. 2) for the training shapes in Fig. 1. Please note, that the model for level 1 (global model) only consists of 2 eigenvectors (modes). For level 2, the
eigenvectors corresponding to 95% of the represented variability are shown.

2.4. Multi-object shape modeling335

The approach for single-object local shape modeling pre-
sented in Sec. 2.2 can be extended to a multi-object model-
ing approach by computing distances between points located
on different object shapes. Therefore, we propose to combine
the geodesic distance dgeo used in Eq. (7) to compute distances340

between landmarks on a surface with a modified Euclidean dis-
tance. The geodesic distance is infinity for points located on
different shapes, whereas the Euclidean distance can be com-
puted between arbitrary points.

Given a shape vector ~s containing landmarks of O objects

~s = (~xT
1,1, . . . , ~x

T
1,M1

, ~xT
2,1, . . . , ~x

T
2,M2

, . . . , ~xT
O,1, . . . , ~x

T
O,MO

)T

with Mi the number of landmarks of shape i ∈ {1, . . . ,O}. We
start by defining an undirected graph Gg(V,Eg) with nodes
V = {~xi, j|i ∈ {1, . . . ,O}, j ∈ {1, . . . ,Mi}} and edges Eg =

{(~xi, j, ~xi,k)|i ∈ {1, . . . ,O}, j ∈ {1, . . . ,Mi}, k ∈ N(~xi, j)}, where
N(~xi, j) is the direct neighborhood of point ~xi, j on object i, e.g.
given by a triangulation or polylines. The weight wg

i, j,k of edge
(~xi, j, ~xi,k) is given by the Euclidean distance between the points:

wg
i, j,k = ‖~xi, j − ~xi,k‖.

The geodesic distance between two points dgeo(~x, ~y) on the ob-345

ject surface can then be approximated by the shortest path in
Gg. Note, that no edges between different objects exist in Gg

and, therefore, the geodesic distance between points on differ-
ent objects is infinity.

We define a second undirected graph Ge(V,Ee), which is
fully connected with edge weights

we
i, j,l,k = η‖~xi, j − ~xl,k‖ + κ, η, κ ∈ R (14)

representing a scaled and shifted Euclidean distance. The short-350

est path in Ge defines a distance de(~x, ~y), with ~x, ~y ∈ V. Clearly,
for η ≤ 1, κ = 0 holds de(~x, ~y) ≤ dgeo(~x, ~y), and for η ≥

1, κ ≥ maxi, j,k dgeo(~xi, j, ~xi,k) holds de(~xi, j, ~xi,k) > dgeo(~xi, j, ~xi,k)
for points on the same object.

To further understand the distance defined in Eq. (14),355

we can use a physical interpretation: Lets assume the energy
needed to travel from ~x to ~y onto the object surface is equal to
the distance dgeo(~x, ~y). The factor η represents the proportion
of energy needed to travel the same distance in the embedding
space Rd, thus describing the relative viscosity of the embed-360

ding space, and κ represents the energy needed to overcome
adhesion forces to leave the object surface.

The combined distance d(~x, ~y) between two points ~x, ~y ∈ V
is now the path with minimum energy, when traveling either on
object surfaces or in the embedding space. We can compute
d(~x, ~y) as shortest path in the combined fully connected graph
G(V,E) with edge weights

wi, j,l,k =

min(wg
i, j,k,w

e
i, j,l,k) if (~xi, j, ~xl,k) ∈ Eg

we
i, j,l,k else.

Note, that the shortest path might combine paths on surfaces
and in the embedding space and depends on η and κ. Further-
more, these parameters need to be chosen in accordance with365

the distance threshold(s) τ because objects are only fully seper-
ated for τ < κ with η ≥ 0.

3. Experiments

In the evaluation part of this paper, the novel shape modeling
approach presented in Sec. 2 is extensively evaluated to analyze370

its capabilities for shape modelling and model-based segmen-
tation. The approach is primarily designed to overcome short-
comings of the classical shape modelling approach in HDLSS
scenarios and the goals of our evaluation are therefore:

1. Analysis of the effect of different numbers of training data375

sets on the shape model properties of models generated by
the new approach in single- and multi-object scenarios to
show its general suitability to tackle the HDLSS problem.

7



(a) JPCLN001 (b) JPCNN001

Figure 4: Two sample cases from the JSRT data base with corresponding man-
ual segmentations for 5 different anatomical structures (white contours) pro-
vided by the SCR data base.

2. Analysis of the effect of different numbers of training data
sets on the segmentation performance of models gener-380

ated by the new approach in challenging single- and multi-
object scenarios.

3. Systematic comparison of the new approach with the clas-
sical SSM method and other state-of-the-art shape mod-
elling approaches specifically designed to cope with the385

HDLSS problem.

In the following, the data used in the experiments, the other ap-
proaches employed for the systematic comparison, the general
experimental design, and the parameter selection are detailed.

Data. To allow for reproducibility of the results, all experi-390

ments are based on the publicly available JSRT data base (Shi-
raishi et al., 2000) that contains 247 chest radiographs (2047
× 2047 pixels; 0.175 mm pixel spacing) with and without lung
nodules and the also publicly available SCR data base (van Gin-
neken et al., 2006) that provides manual segmentations of 5395

anatomical structures (right lung, left lung, heart, right clavi-
cle, left clavicle; cf. Fig. 4) for all 247 JSRT cases. The seg-
mentation of these structures is a non-trivial and challenging
problem due to the projective nature of the data, fuzzy organ
boundaries, and large anatomical variability. These data bases400

have been widely used to evaluate the performance of differ-
ent segmentation algorithms including ASM-like methods (e.g.
(van Ginneken et al., 2006; Cerrolaza et al., 2011)).

Each manual segmentation of the SCR data base consists of
a set of 2D points in correspondence across the whole popula-405

tion. The authors of the data base divided the data (the images
and related contours) into two distinct sets of 124 (fold1) and
123 cases (fold2) with the same proportion of pathological and
healthy cases. For this evaluation, fold2 is used as training data
while fold1 serves as test data. In a preprocessing step, all 247410

contours are aligned in a common coordinate system by using
similarity transforms to account for differences in pose and size.

Approaches. In addition to the classical SSM (cf. Sec. 2.1), the
performance of the new locality-based SSM (Locality-SSM)
presented in this work is compared to three state-of-the-art ap-415

proaches for shape modelling in HLDSS scenarios. The FEM-

SSM approach of Cootes and Taylor (1995) is chosen as a rep-
resentative of approaches that manipulate the training shapes
or augment the resulting sample covariance matrix. From the
hierarchical wavelet-based approaches, the original method of420

Davatzikos et al. (2003) (Wavelet-SSM) and the recent method
of Cerrolaza et al. (2012) (MOWavelet-SSM) are selected.
Both approaches address different aspects: While the Wavelet-
SSM method was developed for single-object scenarios and
is not suitable for multi-object modeling, the MOWavelet-425

SSM method explicitly accounts for the inter-object relations
in multi-object scenarios.

Due to the lack of publicly available implementations of
these approaches, all approaches employed in this study were
implemented in MATLAB by the authors of this paper based430

on the information provided in the respective original papers.
This source code (including code for Locality-SSM), is freely
available online3.

Experimental design. The experiments are designed with re-
spect to the previously defined three goals. In general, the435

evaluation consists of two different parts: In the first part, the
properties (generalization ability, specificity and compactness)
of the shape models generated by the different approaches with
varying numbers of training data are evaluated by using the con-
tours of the JSRT/SCR data bases. The second part deals with440

the evaluation of the segmentation performance of the shape
models in a real segmentation application. This part is, there-
fore, based on the contours and the associated images of the
JSRT/SCR data bases.

Furthermore, each evaluation part is subdivided into two sub-445

parts: a single-object and a multi-object scenario. In the single-
object scenario, only the right lung contours of the JSRT/SCR
data bases consisting of 44 corresponding landmarks are em-
ployed. Conversely, in the multi-object scenario, all 5 anatom-
ical structures with a total of 166 corresponding landmarks450

(right lung: 44, left lung: 50, heart: 26, right clavicle: 23, left
clavicle: 26) are used.

The general design of the experiments for both evaluation
parts (model properties and segmentation) is the same: For the
different approaches, models are generated for varying numbers455

N ∈ {5, 10, 15, 20, 30, 40, 70, 120} of available training samples.
The N training samples are randomly chosen subsets of the 123
cases in the training set. Identical subsets are used for the dif-
ferent approaches for a training set size N.

In the first part, for each model built, its generalization abil-460

ity, specificity and compactness (Davies et al., 2002) are com-
puted. The generalization ability describes the ability to model
formerly unseen shapes, the specificity indicates the validity of
the contours produced by the model, and the compactness is the
number of parameters of the model. To compute the generaliza-465

tion ability, for each contour in the test set the mean landmark
distance to its closest model instance is measured by projecting
the test contour to the subspace spanned by the eigenvectors
of the SSM. For estimating the specificity, 1000 random model

3https://imi.uni-luebeck.de/multi-resolution-multi-object-statistical-shape-
models
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instances are generated and the minimum mean landmark dis-470

tance to one of the available samples in the whole data base
is computed. The compactness corresponds to the number of
eigenvectors used to represent the variability. For each training
set size N, the experiments are repeated 50 times and the re-
sulting measures are averaged to reduce the bias introduced by475

the random selection process. The Wavelet-SSM is not used for
the multi-object scenario as it is only applicable to single-object
data.

In the second part, the segmentation performance of mod-
els built for varying numbers of available training num-480

bers is assessed. For this purpose, the standard multi-
resolution active shape model fitting algorithm of Cootes et al.
(1995, 2000) was implemented and all approaches were in-
tegrated into this framework as described by their authors.
As before, models are generated for varying numbers N ∈485

{5, 10, 15, 20, 30, 40, 70, 120} of available training cases and
used to segment the right lung/all 5 structures in the chest ra-
diographs belonging to the test set by applying the ASM algo-
rithm. For each model the segmentation performance is quanti-
tatively measured by calculating mean symmetric contour dis-490

tances between the contours resulting form the ASM algorithm
and the ground truth contours provided by SCR data base. For
the multi-object scenario, mean symmetric contour distances
are individually calculated for each anatomical structure and
finally weighted and summed according to their proportion of495

the full number of landmarks to get an overall mean contour dis-
tance. For each training set size N, the experiments are repeated
{40, 40, 40, 40, 35, 35, 35, 30, 20} times with less repetitions for
larger training sets to reduce the computational effort.

Parameter selection. The parameters were chosen based on500

systematic experiments in which only the training data was uti-
lized and according to the parameters used by the respective
authors in their publications .

In the following, we list the parameter configurations for
all approaches in our experiments to allow for reproducibility505

of our results. Generally, for all tests and models (and levels
therein), the shapes generated by the models where restricted
to a hyperrectangle with α = 2.5 (cf. Eq. (6)). The remaining
parameters for each approach were chosen as follows:

• Locality-SSM: Number of levels/resolutions L =510

5; variability to be retained at each level fL =

(0.95, 0.95, 0.95, 0.95, 0.95); single-object distance thresh-
olds (in mm, starting with the max. distance in the data
that is decreased by a factor of 0.5 at each level) τL =

(957.22, 475.61, 239.30, 119.65, 59.83); multi-object dis-515

tance weights η = 10, κ = 150; multi-object distance
thresholds (in mm, starting with the max. distance in the
data that is decreased by a factor of 0.5 at each level)
τL = (2278.44, 1139.22, 569.61, 284.81, 142.40). For the
multi-object data, this leads to a separation of all struc-520

tures at the last level (τL < κ).

• Classical SSM: Variability to be retained f = 0.95

• FEM-SSM: Variability to be retained f = 0.95; proportion
of FEM variation to include a = 2500

N (single-object), a =

500
N (single-object segmentation), a = 35000

N (multi-object),525

a = 10000
N (multi-object segmentation). See (Cootes and

Taylor, 1995) for details on this parameter.

• Wavelet-SSM: Number of levels L = 4; Debauchies-7
wavelets are used as proposed in (Davatzikos et al., 2003);
variability to be retained at each band fB = 0.95. See (Da-530

vatzikos et al., 2003) for details on these parameters.

• MOWavelet-SSM: 5 levels of resolution (R = 4); Lin-
ear B-Spline wavelets are used as proposed in (Cerrolaza
et al., 2012); variability to be retained at each resolution
fr = (0.95, 0.99, 0.99, 0.99, 0.995). For the multi-object535

scenario, a grouping of the 5 anatomical structures needs
to be defined. Here, all structures are grouped individually
on the two highest levels, while all structures are modeled
together on the two lowest levels. On the remaining level,
same side lungs and clavicles are combined and the heart540

is modeled individually. See (Cerrolaza et al., 2012) for
details on these parameters.

With the exception of the FEM-SSM approach, the param-
eters listed above are used for all experiments (modeling and
segmentation performance evaluation). For the FEM-SSM, the545

weighting parameter a was chosen individually for the model-
ing and segmentation experiments and each scenario (single-
object/multi-object) in a way that the integral of the difference
between mean landmarks distances over all training subsets for
the classical SSM and the FEM-SSM in the generalization test550

is maximized.
In addition to the modeling approach-specific parameters, the

parameters of the ASM segmentation algorithm employed for
the segmentation task need to be chosen. In (van Ginneken
et al., 2006), a comparison study of different supervised seg-555

mention methods on the JSRT/SCR data base is performed. A
key contribution of their work is the investigation of the effects
of the different parameters of the ASM segmentation algorithm
on the segmentation performance. Therefore, the parameters
giving the best results in their work are employed here (ASM560

tuned; e.g., appearance model: k = 5, LMax = 5; search algo-
rithm: nS = 2, Nmax = 20, pclose = 1.1; see (van Ginneken
et al., 2006) for details and explanations). However, in contrast
to van Ginneken et al. (2006), we do not include pose and size
differences into our models and, hence, need to estimate a sim-565

ilarity transform in each iteration of the ASM algorithm. The
algorithm is initialized with the mean shape.

Due to the low image resolution at the highest levels (low-
est image resultion) of the multi-resolution image pyramid uti-
lized in the ASM algorithm and its rather simplistic gray value570

profile-based candidate point search, the resulting candidate
shapes are noisy (cf. Fig. 5). It turned out that this noise
negatively impacts the segmentation performance of the ap-
proaches. Therefore, the ASM algorithm was slightly modified
in an approach-specific way for the Locality-SSM, FEM-SSM575

and Wavelet-SSM approaches to improve the segmentation ro-
bustness. For the Locality-SSM approach a hierachical fitting
scheme was implemented by restricting the number of eigen-
vectors used for the model fitting step at each of the 5 image
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(a) Level 1 (16 × 16 pixels) (b) Level 2 (32 × 32 pixels)

Figure 5: The two highest highest levels of the multi-resolution image pyramid
of case JPCNN001 depicted in Fig. 4 with exemplary noisy candidate contours
obtained by the ASM algorithm when starting from the white contours.

resolution levels to the number of eigenvectors resulting from580

the combined locality model at this model level (also 5). For
the FEM-SSM approach, no explicit global-to-local hierarchy
of eigenvectors exist. Such a hierarchy is, therefore, simulated
by using a limited number of eigenvectors corresponding to the
number of eigenvectors of the classical SSM learned on the585

same training data for the first 4 levels while the full model
is only employed at the lowest pyramid level. For the Wavelet-
SSM approach, a Gaussian smoothing of the contour deforma-
tion induced by the new candidate points as proposed in (Da-
vatzikos et al., 2003) is performed. Furthermore, a hierarchical590

scheme was implemented by using the natural hierarchy given
by the model by restricting the bands used for the model fitting
step at each of the first 3 image resolution levels to the bands
at this model level (including bands belonging to lower levels
of the model). For the MOWavelet-SSM, no modifications took595

place as it has shown to be relatively invariant to noise by Cer-
rolaza et al. (2015) and the complicated wavelet-based shape
decomposition does not allow a simple hierarchical adaptation
of the fitting algorithm.

4. Results600

In this section, the results of both parts of the experiments
described in Sec. 3 are summarized.

Quantitative results for the first part of the evaluation (gen-
eralization ability, specificity, and compactness) obtained for
all approaches in both scenarios are shown in Tab. 1, Tab.605

2, and Fig. 6. Regarding the generalization ability, the novel
Locality-SSM approach significantly outperforms the classical
SSM, the Wavelet-SSM, and the MOWavelet-SSM approaches
for all training set sizes in the single-object as well as the multi-
object experiments and the differences are especially high for610

small number of training samples. Here, the statistical signif-
icance between the mean results reported in Tab. 1 & 2 for
different modeling approaches obtained for the same training
set size over all repetitions are assessed by pairing the mean
values for each run in paired t-tests with p < 0.05. Only the615

FEM-SSM approach is able to generate better results than the
Locality-SSM approach for some training set sizes. However,

this behavior is only seen for larger training set sizes (single-
object: N ≥ 40; multi-object: N ≥ 70).

The superiority of the Locality-SSM approach with respect620

to the generalization ability comes along with a relatively high
specificity compared to most of the competing approaches. In
terms of compactness, the number of modes needed to obtain
these results can be characterized as average for the single-
object scenario and is lower than that of all other approaches625

(except for the classical SSM) for the multi-object scenario,
showing the efficiency of the proposed approach.

Regarding the individual performances of the other ap-
proaches with respect to generalization ability, specificity, and
compactness, it can be seen that for the single-object experi-630

ments the classical SSM and the MOWavelet-SSM approaches
generate comparable results in terms of the generalization abil-
ity. This can be explained by the fact that the hierarchy built
by the MOWavelet-SSM approach is responsible for model-
ing inter-object relations and, therefore, despite the larger num-635

ber of modes does not have any accuracy advantages over the
classical SSM in single-object scenarios. On the contrary, for
the multi-object scenario, the advantages of this approach over
the classical SSM are clearly visible. However, the number of
modes needed to achieve these results is relatively high (≈ 150)640

but can be explained by the hierarchy built. The Wavelet-
SSM approach is able to significantly outperform the classical
SSM approach in terms of generalization ability in the single-
object experiments. As for the MOWavelet-SSM approach in
the multi-object setup, the number of modes needed to obtain645

these results is relatively high and can also be explained by the
hierarchy built and the resulting large number of bands that are
modeled individually. The FEM-SSM approach also signifi-
cantly outperforms the classical SSM with respect to the gen-
eralization ability and is the only approach to also outperform650

the Locality-SSM approach for some training set sizes. For this
approach, the dependence of the specificity on the number of
training samples N is striking. This is a results of the assumed
(inverse) linear relationship between N and the proportion of
FEM variation to be included in the model (cf. parameter a in655

Sec. 3). With increasing N, the FEM-SSM model (theoreti-
cally) approaches the classical SSM.

The results of the model-based segmentation experiments
(second part of the evaluation) are also reported in Tab. 1 &
2 and exemplary illustrations of segmentation results can be660

found in Fig. 7. The results reported for the classical SSM
for N = 120 training samples are in the range of the results ob-
tained in the comparison study of van Ginneken et al. (2006) on
the same data with the same parameters for the ASM algorithm.

Interestingly, the MOWavelet-SSM approach is not able to665

outperform the classical SSM in the multi-object setting of the
the segmentation experiments. The reasons for this behavior,
however, remain unclear but may be related to the noisiness of
the candidate contours during the model fitting. For the FEM-
SSM approach, Fig. 7 shows that the large number of modes670

of the multi-object models (cf. Fig. 6) leads to highly noisy
contours. This behavior seems to neither affect the specificity
results nor the segmentation performance, but can be clearly
considered a disadvantage as the contours have an highly un-
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Table 1: Generalization ability and segmentation performance for the single-
object scenarios of both evaluation parts obtained by the different shape mod-
eling approaches tested given varying numbers of training samples. Results are
given as mean±standard deviation in mm over all test data sets and repetitions.

# Training Locality- Classical FEM- Wavelet- MOWavelet
samples SSM SSM SSM SSM SSM

Generalization ability (mean landmark distance [mm])

5 2.10±1.27 3.78±1.43 2.99±1.28 2.72±1.38 3.82±1.48
10 1.34±1.05 2.71±0.96 1.90±0.80 1.78±0.93 2.75±1.01
15 1.14±0.91 2.36±0.82 1.56±0.67 1.46±0.75 2.39±0.86
20 1.07±0.92 2.03±0.71 1.31±0.58 1.39±0.73 2.07±0.76
30 0.99±0.87 1.80±0.61 1.06±0.50 1.26±0.66 1.83±0.65
40 0.96±0.86 1.62±0.54 0.91±0.47 1.17±0.63 1.65±0.59
70 0.88±0.82 1.44±0.45 0.70±0.40 1.05±0.56 1.47±0.49

120 0.86±0.81 1.29±0.40 0.72±0.36 0.93±0.49 1.31±0.44

Segmentation performance (mean point-to-contour distance [mm])

5 2.42±1.27 3.23±1.61 2.90±1.56 2.74±1.38 3.18±1.53
10 2.29±1.28 3.06±1.69 2.77±1.68 2.66±1.42 3.01±1.62
15 2.24±1.19 2.91±1.67 2.62±1.59 2.59±1.36 2.86±1.60
20 2.24±1.21 2.86±1.60 2.61±1.59 2.58±1.38 2.83±1.59
30 2.17±1.14 2.85±1.68 2.62±1.61 2.61±1.38 2.79±1.66
40 2.19±1.18 2.77±1.61 2.60±1.56 2.59±1.37 2.76±1.65
70 2.15±1.13 2.72±1.62 2.63±1.57 2.62±1.35 2.70±1.63

120 2.11±1.09 2.69±1.51 2.67±1.53 2.74±1.41 2.70±1.66

natural appearance. Of course, this noisiness can be reduced675

by lowering the proportion of FEM variations included in the
model. However, initial tests showed that this would lead to a
significantly decreased segmentation accuracy.

The most important result of the segmentation experiments
is that the Locality-SSM approach significantly outperforms all680

other approaches in all segmentation experiments (except for
the FEM-SSM at N = 120 in the multi-object scenario) de-
spite its relatively high specificity. Its negative effects are ef-
fectively avoided by the small but natural modifications of the
standard ASM algorithm (integration of a hierarchical fitting685

scheme). Again, the largest improvements of the Locality-SSM
approach over the competing methods are seen for small num-
bers of training samples. It is also interesting to note that the the
Locality-SSM approach is able to achieve a segmentation accu-
racy with very small numbers of training samples (e.g. N = 15)690

that is better than that obtained by the competing approaches
with N = 120 training samples. This, again, demonstrates the
effectiveness of the proposed locality-based modeling approach
and is visible in Fig. 7. These exemplary illustrations of in-
dividual segmentation results show that the Locality-SSM ap-695

proach is much better able to adapt to the individual details of
the contours than the classical SSM (cf. first and second row in
Fig. 7) for small training populations and also shows a better
adaptation to the inter-object relations in multi-object scenarios
(cf. last two rows in Fig. 7).700

5. Conclusion

Statistical shape models are widely used in medical image
analysis to aid segmentation or classification. These models
are typically learnt from a population of previously observed
training shapes. However, in the medical context, providing705

Table 2: Generalization ability and segmentation performance for the multi-
object scenarios of both evaluation parts obtained by the different shape mod-
elling approaches tested given varying numbers of training samples. Results are
given as mean±standard deviation in mm over all test data sets and repetitions.

# Training Locality- Classical FEM- MOWavelet
samples SSM SSM SSM SSM

Generalization ability (mean landmark distance [mm])

5 4.23±2.13 7.90±2.74 7.08±2.67 7.67±2.67
10 2.94±1.85 6.33±2.31 5.18±2.11 5.83±2.19
15 2.63±1.82 5.48±2.21 4.21±1.95 4.90±2.08
20 2.50±1.79 4.99±2.07 3.63±1.78 4.35±1.96
30 2.28±1.78 4.27±1.97 2.91±1.68 3.64±1.90
40 2.17±1.81 3.86±1.91 2.57±1.67 3.31±1.91
70 2.06±1.82 3.33±1.84 2.01±1.62 2.83±1.84
120 1.95±1.93 2.98±1.85 1.65±1.63 2.53±1.86

Segmentation performance (mean point-to-contour distance [mm])

5 3.62±1.52 5.01±1.71 4.53±1.66 5.19±1.82
10 3.08±1.33 4.42±1.64 3.95±1.57 4.57±1.73
15 2.95±1.25 4.07±1.59 3.62±1.49 4.23±1.74
20 2.88±1.21 3.87±1.58 3.41±1.42 3.97±1.67
30 2.84±1.17 3.62±1.55 3.22±1.37 3.64±1.58
40 2.82±1.21 3.54±1.58 3.16±1.40 3.46±1.54
70 2.84±1.21 3.27±1.41 2.97±1.26 3.22±1.37

120 2.84±1.17 3.10±1.24 2.84±1.19 3.09±1.24

an appropriate and representative training population is cum-
bersome or even impossible. Therefore, statistical shape mod-
els frequently suffer from the high-dimension-low-sample-size
(HDLSS) problem resulting in models with insufficient expres-
siveness.710

In this work, a new approach for learning representative
multi-object multi-resolution statistical shape models from a
small training population was presented to address the HDLSS
problem. The method is based on the assumption that lo-
cal shape variations have limited effects in distant areas and,715

therefore, can be modeled independently. To integrate this as-
sumption into the classical statistical shape modeling frame-
work, the sample covariance matrix was manipulated by setting
the covariances between distant landmarks to zero. A multi-
resolution scheme allowing for different levels of locality was720

derived and equipped with a method to combine variability in-
formation modeled at different levels into a combined single
shape model. This combined and consistent representation of
global and local variability in a single shape model is a major
contribution of this work and allows the use of the standard ac-725

tive shape model algorithm for model-based segmentation.
Compared to other approaches that manipulate/augment the

sample covariance matrix or artificially enlarge the training
population to cope with the HDLSS problem such as the FEM-
inspired method of Cootes and Taylor (1995) or the work of730

Koikkalainen et al. (2008) based on random shape deforma-
tions, a methodological advantage of the approach presented
in this work is that the resulting model solely relies on shape
information already present in the (small) training population.
Another methodological advantage is related to the hierarchy735

defined in the proposed approach by the different levels of lo-
cality as it allows to easily derive a hierarchical fitting scheme.

Although the new approach is guided by the assumption that
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Figure 6: Generalization ability, specificity, and compactness obtained during the single-object and multi-object experiments for the different shape modelling
approaches given varying numbers of training samples. Smaller values indicate better models. For the FEM-SSM approach, the results obtained when using the
optimized parameters for the segmentation experiments are given here for comparison as dashed lines.
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local shape variations have only limited influence in distant ar-
eas, the introduced covariance matrix manipulations do not lead740

to complete independence of different local areas such as in the
patch-based approach of Zhao et al. (2005). This is because
even if the covariance of two points of an object is set to zero
an indirect dependency still exists due to the neighborhood re-
lations of all points. Hence, generated shapes are smooth and745

no post-processing (e.g. stitching of piecewise smooth patches,
. . . ) is required.

In comparison to the diverse hierarchical wavelet-based mod-
eling approaches originating from the work of Davatzikos et al.
(2003), a general advantage of the locality-based approach is750

that no costly wavelet decomposition/synthesis needs to be per-
formed during model application. Compared to the wavelet-
based approach of Cerrolaza et al. (2012), which was designed
to model inter-object relations by manually defining an object
hierarchy, the approach presented here is also able to model755

intra-object relations and provides a unified and automatic way
to build the hierarchy based on the distance thresholds chosen.
In (Cerrolaza et al., 2015), (Cerrolaza et al., 2012) was extended
by introducing an automatic hierarchy generation method and
the possibility to model intra-object relations. However, in con-760

trast to the locality-based approach, there approach performs a
post-processing of the generated shape during model applica-
tion to handle shape inconsistencies resulting from the hierar-
chical object splitting.

An extensive evaluation based on a public data base of 247765

chest radiographs was performed to show the modeling and
segmentation capabilities of the novel approach in single- and
multi-object HDLSS scenarios. Within the evaluation the new

approach was not only compared to the classical shape model-
ing method but also to three state-of-the-art shape modeling ap-770

proaches specifically designed for HDLSS scenarios. The new
approach outperformed all other approaches in (nearly) all sit-
uations in terms of generalization ability and model-based seg-
mentation accuracy and, therefore, illustrated its effectiveness.
Most prominent improvements over the competing approaches775

were observed for small training populations (e.g. 15 samples).
It was also observed that the new approach is able to achieve
segmentation results with very small numbers of training sam-
ples (e.g. 15) that are better than the results obtained by the
other approaches with 120 training shapes. Both of these re-780

sults prove the practical impact of this work in HDLSS scenar-
ios. However, it has to be noted that the new approach suffers
from a relatively high specificity but its (possible) negative im-
pact in the segmentation experiments was successfully avoided
by employing a hierarchical multi-resolution fitting scheme.785

For the initial evaluation performed for this work, the exper-
iments were restricted to the 2D case mainly because of the
availability of public data. The methodology developed in this
article is not limited to a certain dimensionality of the input
data and only depends on the definition of a reasonable dis-790

tance measure to assess locality. However, in future work, the
approach should be evaluated on additional data (2D and 3D)
to verify the results presented here. Future work should also
investigate ways on how to apply the locality assumption un-
derlying the approach presented here without having to directly795

modify the sample covariance matrix as this requires an explicit
calculation (and storage) of this possibly large matrix. Such a
modification would also enable the use of this methodology in
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Figure 7: Exemplary results obtained for all modelling approaches for the single- and multi-object scenarios given small numbers of training shapes (15 and 20,
respectively). The mean surface distance between the segmentation resulting from the ASM algorithm (colored contours) and the manual ground-truth segmentation
(white contour) is given under each image.
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scenarios such as statistical deformation modelling, which also
suffer from the HDLSS problem and where the dimensional-800

ity of the input data is usually magnitudes higher compared to
shape modeling (Xue et al., 2006; Onofrey et al., 2015).
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