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ABSTRACT

Advances in the development of optical coherence tomographs will make it possible to monitor the progression
of eye diseases at home. To this end, Self-Examination Low-Cost Full-Field Optical Coherence Tomography
(SELFF-OCT) was recently developed. SELFF-OCT devices are easy to operate and allow patients to take
images of the retina themselves without having a doctor present. However, images produced by these devices are
of lower quality compared to traditional OCT devices. In this work, we propose a deep-learning assisted pipeline
which enhances the quality of SELFF-OCT images. The pipeline consists of four steps: 1. Quality assessment,
2. Image denoising, 3. Registration and fusion of multiple OCT-scans, 4. Averaging of multiple neighboring B-
scans. Our preprocessing pipeline enhances the image quality in terms of signal-to-noise ratio (SNR), artifacts and
distortions, measured with the blind/referenceless image spatial quality (BRISQUE) evaluator, and detectability
of retinal layers, measured with Fisher’s linear discriminant score. Starting from the recorded images, our method
increases the SNR from 2.8 to 4.8, lowers the BRISQUE from 67 to 18 which indicates a reduced number of
artifacts, and increases Fisher’s discriminant from 2.1 to 5.7 which indicates a better detectability of retinal
layers. These results indicate that the proposed pipeline will be useful for improving the detection of biomarkers
in future studies utilizing SELFF-OCT.
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1. INTRODUCTION

Age-related macular disease and diabetic retinopathy are leading causes of blindness. Monitoring eye diseases
at home provides the opportunity to continuously gather information about the state of these eye diseases and
thereby opens the avenue for individualized treatment at the right time. With the advent of Self-Examination
Low-Cost Full-Field Optical Coherence Tomography (SELFF-OCT)1 a technology exists which allows patients
to take images of their retina themselves. While the handling of the SELFF-OCT devices does not require a
technical service person, the image quality lags behind clinical OCT imaging. To remove speckle noise, artifacts,
and missing signal due to movement, we propose a preprocessing pipeline for image enhancement as depicted in
Fig. 1. Finally, we verify that our pipeline improves the image quality both from a qualitative and quantitative
point of view.
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Figure 1. Our pipeline consists of four step. We start by assessing the image quality. Images with appropriate quality
are included for further quality enhancement. Subsequently, images are being denoised. Following this, we register two
OCT-scans and fuse them together. Finally, we apply a weighted moving average filter to enhance the contrast of retinal
layers.

2. METHODS

2.1 Data

The OCT data used in this work were recorded with a Self-Examination Low-Cost Full-Field Optical Coherence
Tomography (SELFF-OCT) device of the sixth generation produced by Visotec.1 Full-field OCT devices record
2-dimensional planar images along the optical axis of the eye. These images are called en face scans. The
coordinate vectors, which span en face scans, are called lateral dimensions. The optical axis, also called the
axial dimension, is perpendicular to the two lateral dimensions. The en face scans are stacked along the axial
dimension and a 3-dimensional volume is obtained. By slicing the image volume along one lateral dimension, we
obtain B-scans. These B-scans can be seen in Figures 2 and 3.

We recorded OCT images from 50 subjects with healthy eyes. For each subject, we measured the left and
right eye. Three sets of measurements per eye were performed. During one set of measurements, the SELFF-
OCT device took a sequence of 15 volumetric scans within less than two minutes. Image variations across these
15 scans were smaller than the image variations in comparison to another set of measurements. For ten subjects,
we labeled the retinal layers using the Iowa Reference algorithm.2–4

2.2 Pipeline

Our pipeline for image quality enhancement is depicted in Fig. 1 and consists of four steps: First, we remove
images of bad quality and rank the remaining images; second, we apply a denoising algorithm on the images;
third, we take the two best recordings of the same eye, register them to each other, and average them in order
to reduce noise. To further reduce noise, we average adjacent B-scans with a one-dimensional Gaussian low-pass
filter (σx = 35µm).

2.2.1 Quality assessment

During the image acquisition, artifacts impact the images. These artifacts vary in severity. Images which contain
too many artifacts or do not show the region of interest cannot be repaired through means of registration. We
defined four classes of image qualities, which are depicted in Fig. 2. For an image, in order to be considered
for further processing, three quality conditions need to be met: First, the retina needs to be visible, second a
sufficient amount of the choroid needs to be present, and third only a few artifacts are allowed. If the second
condition is met, then the first condition is also met. If an image suffices all three conditions, then we call it
clean. If an image suffices the first and second but not the third condition, then we call it corrupted. If an
image meets the first and third but not the second condition, then we categorize it as missing choroid. If an
image meets only the third condition, then we classify it as cropped retina. These conditions are intentionally
formulated in a vague way because we have no objective way to practically rate the images. With the intention
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to train and evaluate a single layer convolutional neural network, we manually labelled 312 images according to
the four classes. The neural network is described in Tab. 1. The algorithm was then used to predict the quality
class of the remaining 4368 images.

After identifying all images of high quality, we chose the two best images from a given set of measurements. To
this end, we used a handcrafted image quality score developed and tested by Visotec. The score characterizes the
images based on three metrics. The first metric describes how many en face scans are empty due to movements
of the head relative to the devices. The second metric describes vignetting (reduction of the brightness of the
image towards the periphery). The last metric estimates the signal-to-noise ratio.

Figure 2. From left to right, images of the four quality classes clean, corrupted, missing choroid, and cropped retina are
shown. Only images in the first class are considered for further processing.

Table 1. Convolutional neural network for classifying the image quality.

Layer type Output shape Comment
0. Input 1 × 200 × 550 B-scan as input
1. 1D Average pooling (1× 50, 1× 25 stride) 1 × 200 × 21 Average lateral dim.
2. 1D Conv. (8 kernels, 100× 1, 2× 1 stride, ReLU activation) 8 × 51 × 21 Conv. axial dim.
3. Dense (Softmax activation) 4 Quality classification

2.2.2 Denoising

To reduce the speckle noise, we denoised the OCT images using the Noise-to-noise (N2N) approach.5,6 The N2N
network was trained using paired image data which we obtained from a phantom eye which was fixed in front
of a SELFF-OCT device. Thereby, we acquired images where everything but the noise was constant. The full
approach is described in.6

2.2.3 Registration and image fusion

In order to increase the image quality, we want to fuse multiple OCT recordings from the same set of measure-
ments. While recording multiple OCT volumes, the position of the eye relative to the scanner changes such that
we need to register these images to each other. We performed a two-stage registration scheme for coarse-to-fine
alignment.7,8 In the first stage, we estimated the axial translation between the retina in two volumes using the
deep learning framework for unsupervised affine image registration (AIRNet) of de Vos et al.7 For this task, we
first averaged OCT-volumes along one lateral dimension. The obtained B-scan exhibits a strong contrast and
Bruch’s membrane is clearly visible. The AIRNet learns to predict the correct axial translation by minimizing
the mean squared error. For training, fixed and moving images were freely chosen from the whole dataset, i.e.,
the network learned to predict the axial alignment even for images which come from different eyes and subjects.
After training, we computed the vertical alignment between the two images with the highest initial quality within
one set of measurements.

In the second stage, we took the pre-aligned images and accurately matched them using the VoxelMorph ap-
proach. Given two 3D-images each of size RH×W×D, VoxelMorph predicts a deformation matrix ϕ ∈ RH×W×D×3

which describes how far and in what direction each voxel in the moving image is shifted. For training the Vox-
elMorph model and for inferring the deformation matrices, we used images which were first denoised, vertically
shifted, smoothed along one lateral dimension with a moving average with a window of size 40µm and then
resized by a factor of 0.32 along both lateral dimensions. This changes the lateral resolution from 2.5 µm×
3.4 µm to 7.8 µm × 10.6 µm. The axial resolution of 5.6 µm was retained unchanged. Resizing was necessary due
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to a memory constraint of 40 GB VRAM. We trained VoxelMorph in an unsupervised fashion by minimizing
the mean squared error between a fixed image f and a moved image m ◦ ϕ. A smooth displacement field ϕ
was encouraged by using a diffusion regularizer on the spatial gradients as described in.8 The fixed and moving
images are the first and second-best image from each set of measurements.

3. RESULTS

The aim of the preprocessing pipeline is the improvement of image quality such that humans and computer
programs can better extract semantic information from the images. To assess whether this aim has been achieved
through our pipeline, we chose three metrics which are the signal-to-noise ratio (SNR), the blind/referenceless
image spatial quality evaluator score (BRISQUE),9 and Fisher’s linear discriminant. Here, we define the SNR as
the mean intensity of the voxels within the retina divided by the standard deviation of the voxels in the vitreous
humor (upper part of the image). The BRISQUE score is based on handcrafted features, which characterize
image distortions and artifacts. These features are passed to a Support Vector Regressor. We rely on the
BRISQUE implementation described in.10 Using the segmentation masks, we calculate Fisher’s discriminant
between seven adjacent retinal layers as (µ2

i − µ2
j )/(σ

2
i + σ2

j ). The intuition behind Fisher’s discriminant is that
distinguishable retinal layers differ in their average intensity (numerator) and exhibit a small amount of noise
within each layer. The Fisher discriminant thus gives an indication of how well a clinician or an AI program
could segment the images. For computing the metrics, all images were first normalized to a minimum value of 0
and a maximum value of 1.

In Fig. 3, we show the output of the pipeline at different stages of the pipeline. For the baseline image,
individual retinal layers cannot be distinguished. After applying a logarithmic transform and the N2N network
to the image, retinal layers slowly become visible, but at the same time, the image is getting blurred. Registration
and fusion of two volumes further highlights individual retinal layers. Finally, by applying the weighted moving
average on adjacent B-scans, we can increase the visibility of the retinal layers further. We observe that the
quantitative results in Tab. 2 align with the qualitative impression of the images.

Table 2. Average SNR, BRISQUE and Fisher’s discriminant of the images. The best results are printed in bold. The last
row of the table shows a comparison with Spectralis OCTs, which can be regarded as the clinical standard.

B-Scans Preprocessing method SNR ↑ BRISQUE ↓ Fisher’s discriminant ↑

Single

Baseline 2.8 67 2.1
Image fusion 4.1 65 3.0
N2N 7.4 58 2.8
N2N & Image fusion 6.3 50 4.1

Average

Baseline 4.3 52 4.7
Image fusion 5.4 40 5.2
N2N 4.6 41 5.4
N2N & Image fusion 4.8 18 5.7

- Spectralis-OCT (clin. standard) 10.4 28.5 30.5
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Figure 3. The first row shows a single B-scan at different stages of the preprocessing pipeline. In the second row, we
averaged multiple adjacent B-scans from the same volume.

4. DISCUSSION

Our presented pipeline addresses the problem of low image quality in SELFF-OCT images. By removing noise
using the N2N approach, we increased the image quality in terms of SNR, BRISQUE, and Fisher’s discriminant.
Furthermore, by registering and fusing two OCT scans from the same set of measurements, we were able to
improve BRISQUE and Fisher’s discriminant even further. Our best result in terms of BRISQUE and Fisher’s
discriminant was achieved by averaging adjacent B-scans. This, however, comes at the cost of reducing high-
frequency information in one lateral dimension. Future work will involve the fusion of more than two OCT
scans. Regarding the validity of the evaluation of our pipeline, we need to note that all 50 subjects were used
for training the VoxelMorph model. To demonstrate that the registration and fusion step generalizes to unseen
images, further tests with a held-out data set are required.

5. CONCLUSION

Denoising and combining images from multiple SELFF-OCT recordings improves their quality on a qualitative
and quantitative level. The developed pipeline brings us closer to the applicability of SELFF-OCT for monitoring
patients with eye diseases at their home. The improved contrast of different retinal layers suggests that the
presented pipeline will also improve the detection of biomarkers and retinal fluids in future works.
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OCT images using Noise2Noise trained on artificial eye data,” in [Medical Imaging 2024: Image Processing ],
12926, 583–589, SPIE (Apr. 2024).

Proc. of SPIE Vol. 13406  1340610-5



[7] de Vos, B. D., Berendsen, F. F., Viergever, M. A., Sokooti, H., Staring, M., and Isgum, I., “A Deep Learning
Framework for Unsupervised Affine and Deformable Image Registration,” Medical Image Analysis 52, 128–
143 (Feb. 2019). arXiv:1809.06130 [cs].

[8] Balakrishnan, G., Zhao, A., Sabuncu, M. R., Guttag, J., and Dalca, A. V., “VoxelMorph: A Learning
Framework for Deformable Medical Image Registration,” IEEE Transactions on Medical Imaging 38, 1788–
1800 (Aug. 2019). arXiv:1809.05231 [cs].

[9] Mittal, A., Moorthy, A. K., and Bovik, A. C., “No-Reference Image Quality Assessment in the Spatial
Domain,” IEEE Transactions on Image Processing 21, 4695–4708 (Dec. 2012). Conference Name: IEEE
Transactions on Image Processing.

[10] Kastryulin, S., Zakirov, J., Prokopenko, D., and Dylov, D. V., “PyTorch Image Quality: Metrics for Image
Quality Assessment,” (Aug. 2022). arXiv:2208.14818 [cs, eess].

Proc. of SPIE Vol. 13406  1340610-6


