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ABSTRACT

Medical segmentation of optical coherence tomography (OCT) images using deep neural networks (DNNs) has
been intensively studied in recent years, but generalization across datasets from different OCT devices is still
a considerable challenge. In this work, we focus on the novel self-examination low-cost full-field (SELFF)-
OCT, a handheld imaging device for home-monitoring of retinopathies, and the clinically used Spectralis-OCT.
Images from both devices exhibit different characteristics, leading to different representations within DNNs and
consequently to a reduced segmentation quality when switching between devices. To robustly segment OCT
images from an OCT-scanner unseen during training, we alter the appearance of the images using manipulation
methods ranging from traditional data augmentation to noise-based methods to learning-based style transfer
methods. We evaluate the effect of the manipulation methods with respect to segmentation quality and changes
in the feature space of the DNN. Reducing the domain shift with style transfer methods results in a significantly
better segmentation of pigment epithelial detachment (PED). Investigations of the feature space show that the
segmentation quality of PED is negatively correlated with the distance between training and test distributions.
Our methods and results help researchers to choose and evaluate image manipulation methods for developing
OCT segmentation models which are robust against domain shifts.
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1. INTRODUCTION

Age-related macular degeneration (AMD) is a medical condition which results in a loss of vision. AMD can be
treated using specific medications which are injected into the eye. This treatment must be repeated based on
the condition of the eye. To assess the eye, optical coherence tomography (OCT) has been employed. Home
monitoring of the eye has recently been made feasible by the introduction of the self-examination low-cost full-
field (SELFF)-OCT1 which allows the recording of images on a daily basis. As the amount of images increases,
physicians need computerized assistance for examining the recorded images of their patients. Biomarkers in
these images can be segmented by employing deep neural networks (DNNs), but training them for the domain of
SELFF-OCT is challenging, since a lack of pixel-wise annotations exist.2 One approach is to pretrain DNNs on
larger datasets which were recorded using other OCT devices. Problematically, the different image characteristics
of the pretraining and SELFF-OCT dataset lead to a drop of segmentation quality.

This phenomenon is called domain shift and an actively studied topic.3–6 We study the domain shift problem
under the assumption that labels are only given for a training (source) domain but not the test (target) domain.
Domain adaptation can be categorized depending on the adaptation spaces, which are the input space, the
feature space, and the output space of a DNN. Here, we study how manipulations in the input space affect the
segmentation quality. Segmentation metrics alone do not explain why a given manipulation method changes the
segmentation quality. To provide further insight, we measure the representation shifts in the feature space using
the univariate Wasserstein distance, as proposed by Stacke et al. 7.
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2. RELATED WORK

Unsupervised Domain Adaptation: Unsupervised Domain Adaptation (UDA) involves the adaptation from
a labeled source domain distribution to an unlabeled target domain distribution. This sets it apart from e.g.
tasks like domain generalization8 where the target domain distribution is unknown or semi supervised domain
adaptation9 where a small subset of the target domain is labeled. UDA approaches can be divided in three
categories:3 Adaptation in the input, the feature and the output space of a neural network. Feature space
adaptation is e.g. done by alignment of the feature space distributions of source and target domain by clustering
as e.g. in Niemeijer et al.4 or through adversarial training as in Hoffman et al.,10 Li et al.11 or Wang et al.12

Output space adaptation usually consists of self training on the target domain as e.g. applied in Zheng et al.13

or adversarial training on the predicted outputs as in Tsai et al.14 But since we are studying the manipulation
of the input space, the input space adaptation is the most interesting to our work. The input space adaptation
is mostly performed by computing a style transfer between the source and the target domain. This is often done
by utilizing CycleGANs as in e.g. Seebock et al.15 or Romo et al.16 CycleGANs however have the problem that
in failure cases they not only alter the style of an image but also the content. We focused on a non-adversarial
approach that is based on adaptive instance normalisation as introduced in Huang et al.17 and further refined
in Liu et al.18 Such approaches use an auto encoder. The content image that should be style transformed, is
passed through it, as well as a style image. The channel-wise mean and variance statistics of the content image
feature space is hereby exchanged with that of the style image. The style image is hereby chosen from the target
domain and the content image from the source domain.

Measuring domain shift: The problem of measuring domain shifts can be seen as a subset of approaches
which are intended to perform out-of-distribution detection, in which the classification question is posed whether
a data point belongs to the source domain or to a target domain.19 These methods decide at the output stage
of a neural network whether a sample belongs to the source domain using entropy measures.20–22 Likewise,
You et al.23 assess the transferability of models for a given dataset. More recently, the L2-distance has been
used to measure the distance of source and target samples in the feature space by Sun et al.24 Closest to our
use case, Stacke et al. argue for the Wasserstein distance to quantify the effect of domain shifts and image
manipulations.7

3. METHODS AND MATERIALS

In this chapter, we first describe our experiment setup with respect to the data that is used to investigate the
effects of the image manipulation methods. We then introduce the methods for image manipulation and the
approach for measuring the domain shift.

3.1 Dataset preparation

SELFF-OCT/ Spectralis-OCT: The patients in this dataset were diagnosed with neovascular AMD and
showed at least at one eye signs of a medical condition. The dataset contains a total of 45 patients, from which
we excluded seven patients due to low image quality and missing correspondence in either the Spectralis-OCT
or the SELFF-OCT dataset split. All images are accompanied by a pixel-wise segmentation of subretinal fluids
(SRF), intraretinal fluids (IRF), and pigment epithelial detachment (PED), the retina, and the background. A
complete description of the dataset can be found in.25 To learn further topographic information, we refined the
annotations by separating the background annotation into vitreous humor and choroid (areas above and below
retina). The IRF class was mapped to the retina class, because annotators expressed concern about the reliability
of the IRF annotation. Thus, we have C = 5 classes for training the segmentation network. To account for the
different resolutions of the B-scans, the B-scans of the Spectralis device are resampled to the same resolution as
the B-scans of the SELFF-OCT scanner. In total, 3124 and 2048 B-scans for the Spectralis and SELFF-OCT
device are used. Note that for some patients, we included only one eye because the excluded eye was missing for
one of the OCT devices. For training, we randomly take patches of size 256 × 512 pixels.
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RETOUCH: The RETOUCH dataset has been described in Ref.26 It contains pixel-wise segmentation for the
IRF, SRF, and PED. No segmentation for the retina exists, thus we can not separate the background annotation
into vitreous humor and choroid, as we did for the SELFF-OCT dataset. Here, we use a subset of the dataset,
containing only the Spectralis-OCT and Topcon-OCT (T-1000 and T-2000) images. To account for the different
resolutions of the B-scans, we resampled all B-scans to a lateral resolution of 11.72 × 3.5 µm. For training, we
randomly take patches of size 512 × 512 pixels.

3.2 Manipulation methods

We compare four methods for manipulating images. The manipulations are intended to reduce the domain
shift between the images from different devices. As a baseline, we use the original images. The first method
is supposed to increase the diversity of the dataset and thereby the robustness of the segmentation model.
It consists of a traditional augmentation pipeline, which randomly applies gamma transformation, additive
intensity shifts, and histogram shifts. The second method reduces the noise of the images using the structured
Noise2Void (N2V) algorithm.27 The third method and fourth method aim at increasing the similarity of the
images from both devices. The singular value decomposition noise adaptation (SVDNA) algorithm translates
the noise and the histograms between images from different devices.28 The adaptive attention normalization
(AdaAttN) algorithm18 is a DNN-based method to translate the style from one image to another and thereby
increase their similarity. Figure 1 shows the effect of the manipulation methods.

Original Augmentation struct. Noise2Void SVDNA AdaAttN

Figure 1. Visualization of the manipulation methods. The first row displays images from the SELFF-OCT domain, while
the second row shows images from the Spectralis-OCT domain along with the applied manipulations. The same patient
is shown for both domains.

3.3 Measuring domain shift

Oriented on the approach of Stacke et al. 7, we use univariate Wasserstein distance for measuring the feature
distance between different datasets mapped to a neural network’s feature space. The Wasserstein distance
between two distributions ρs, ρt is given as,

W (ρs, ρt) = inf
π∈Γ(ρs,ρt)

∫
R×R

∥x− y∥dπ(x, y). (1)

To obtain the distributions ρ, we sample n = 30 feature vectors zi from the embedded OCT image at the positions
i in the feature space. We choose the positions based on the ground truth segmentation masks. That way, we can
compare the feature distributions that belong to the same class. Additionally, for the SELFF-OCT/Spectralis-
OCT dataset we compare the feature representations in a patient-paired and eye-paired manner, i.e. we compute

the Wasserstein distanceW (ρ
(p,e,c)
s , ρ

(p,e,c)
t ) where p, e, c stands for the same patient, eye, and class. The obtained

distance values are averaged over all available subjects and eyes. The RETOUCH dataset does not have paired
subjects in the source and target datasets. Thus, we aggregate the feature vectors from all images and subjects
to form the distributions and subsequently compute the distance.

3.4 Network architecture and training settings

For robust segmentation, we chose the based HRDA architecture of,29 because Transformer based architectures
showed stronger robustness against domain shifts.6 As encoder, we chose the DAFormer6 and the HRDA decoder
was chosen because it addresses the trade-off between a manageable GPU memory footprint and high resolution
images. Batch sizes were three and four for the SELFF-OCT/Spectralis-OCT and RETOUCH dataset. We train
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the model for 20,000 iterations using only training data from the source domain and create model snapshots
after every 1000 iteration using the target validation dataset. The weights associated with the best snapshot are
then selected for final testing on the test dataset.

4. RESULTS

Evaluation design: To evaluate the employed manipulation methods, we split the data according to their
sensor domains (source and target split). For each domain, we created development and test sets using five-fold
cross validation. The development sets were again split into training and validation sets using an 80-20 ratio.
Patient-related data leakage was prevented by ensuring that patients from the training set were not included in
the test set. We trained the segmentation model for each source domain separately (Spectralis-OCT, SELFF-
OCT). The validation set from the target domain was used to select the best model during the training process.
Final evaluation was performed using the test set. Training and evaluation were repeated for each fold and image
manipulation method. Segmentation quality and representation shift was measured for each fold and class using
the Dice score and the Wasserstein distance. Based on the five folds, we calculated p-values for the Dice scores
using the paired t-test. Normality was tested using the Shapiro-Wilk test.

Evaluation SELFF-OCT/ Spectralis-OCT: In Fig. 2, we show the effect of the manipulation methods
on the segmentation quality of the PED. When training and test data comes from the same device, training
with manipulation methods did not improve over traditional training in which only data augmentations (or no
augmentations) are used (Spectralis-OCT: p = 0.70, SELFF-OCT: p = 0.20). This is as expected, since the
style transfer translates the source data to the target domain and thereby increases the discrepancy between
the training and test data. For the domain adaptation setting, we find that applying AdaAttN during training
improves the Spectralis-OCT to SELFF-OCT segmentation quality from 24.9% to 29.7% (p < 0.05), while testing
with manipulated images decreased the performance. For the SELFF-OCT to Spectralis-OCT shift, testing with
AdaAttN increases the performance from 21.8% to 29.2% (p < 0.05). For other classes besides PED, the best
performing manipulation varies, as detailed in Fig. 6 in the appendix. Subsequently, we investigated the effect
of the manipulation methods on the feature representation within the network. We show in Fig. 3 the t-SNE
embedding at an early and the pre-logit layer in the network. After the first layer of the network, individual
clusters for the manipulation methods can be seen. At the pre-logit layer, the domains are clearly separable.
Using the Wasserstein distance in the 256 dimensional feature space of the pre-logit layer, we find a correlation

Train: Spectralis-OCT
Test: Spectralis-OCT

Train: SELFF-OCT
Test: SELFF-OCT

Train: Spectralis-OCT
Test: SELFF-OCT

Train: SELFF-OCT
Test: Spectralis-OCT

Figure 2. The heatmaps show the Dice score for the segmentation of the PED for different combinations of manipulations
applied at train and test time. The first and second heatmaps show the effect of the manipulations if the network is tested
in the source-only setting, i.e. the training and test domain is the same. The third and fourth heatmap show the effect
of manipulation methods in the domain adaptation setting where the test domain differs from the training domain. For
example, the third heatmap shows that training with AdaAttN translated Spectralis-OCT images and testing with the
original SELFF-OCT images increases the segmentation quality compared to the baseline.
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(c)(b) Pre-logit layer (a) Layer 1

r = -0.92

Figure 3. Visualization of the effect of manipulation methods on the feature space. We examine a DNN which was
trained with the original SELFF-OCT data. Plot (a) and (b) show the t-SNE embeddings of feature vectors at the first
and at the pre-logit layer of the DNN. Marker color and form must be combined. E.g. refers to an SELFF-OCT image
whose style was translated towards the Spectralis-OCT using AdaAttN. Plot (a) shows that the manipulation methods
help to mix shallow image characteristics of the domains. Deeper image characteristics, as displayed in the second plot,
are roughly linearly separable. In plot (c), the Dice score is plotted against the Wasserstein distance measured in the 256
dimensional space at the pre-logit layer of the decoder. Best viewed with zoom.

of −0.92 with the Dice score. In other words, a reduction of the distance is related with a better segmentation.
The corresponding data can be seen in the scatter plot in Fig. 3 (c).

Evaluation RETOUCH Topcon-OCT/ Spectralis-OCT: To obtain additional evidence, we conducted
the same evaluation on the RETOUCH dataset. The heatmaps in Fig. 4 show that the SVDNA method provides
the best image manipulations for the Spectralis-OCT trained models in the source setting (column 1) and in the
domain shift setting (column 3). For the Topcon-OCT trained models, a combination of data augmentation and
denoising at test time performs best in the source-only and domain shift setting (columns 2 and 4).

In Fig. 5, we study the feature space for the Topcon-OCT to Spectralis-OCT domain shift. The t-SNE plots
show especially in the first layer a larger homogeneity for both embedded dataset. After the pre-logit layer, the

Train: Spectralis-OCT
Test: Spectralis-OCT

Train: Topcon-OCT
Test: Topcon-OCT

Train: Spectralis-OCT
Test: Topcon-OCT

Train: Topcon-OCT
Test: Spectralis-OCT

Figure 4. The heatmaps show the Dice score for the segmentation of the PED for different combinations of manipulations
applied at train and test time. The first and second heatmaps show the effect of the manipulations if the network is tested
in the source-only setting, i.e. the training and test domain is the same. The third and fourth heatmap show the effect
of manipulation methods in the domain adaptation setting where the test domain differs from the training domain.
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(c)(b) Pre-logit layer 

Topcon-OCT

(a) Layer 1

r = -0.98

Figure 5. Visualization of the effect of manipulation methods on the feature space. The examined DNN was trained
with the original Topcon-OCT images. Plot (a) shows that the domains are mixed at layer 1, while plot (b) shows
that the domains are more distinguishable at the pre-logit layer. Plot (c) shows that feature distance and segmentation
performance are strongly correlated.

embeddings of both domains become better distinguishable. Finally, we see a strong correlation for a relationship
between the Wasserstein distance and the Dice score.

5. DISCUSSION AND CONCLUSION

In our experiments, we compared image manipulation methods with the aim to improve the segmentation
quality in the presence of domain shifts. To give insight beyond segmentation metrics, we studied the feature
space qualitatively using t-SNE plots and quantitatively by measuring the domain shift using the Wasserstein
distance. Precisely, our results were conducted to help us answer three questions related to finding optimal image
manipulation methods:

1. Does a given manipulation method improve the segmentation quality on the target domain?

2. Does a given manipulation method improve the segmentation quality on the source domain?

3. Is the effect of manipulation methods measurable in the feature space?

We first found that style transfer-based methods can be used to increase the segmentation quality in the tar-
get domain at training and at test time. When comparing the results of the SELFF-OCT dataset with the
RETOUCH dataset, we saw that for the first dataset AdaAttN improved the segmentation quality while for the
second dataset SVDNA led to better results. This shows that there is no go-to method for improving the segmen-
tation quality on a target domain. In particular, the direction of the domain shift and the class to be segmented
seem to be factors which should be considered when choosing an image manipulation method. Secondly, we
found that the SVDNA method improved slightly the performance for in-distribution segmentation. This effect
was consistent for Spectralis-OCT data from both datasets. Thirdly, our study of the feature space (a) showed
that domain shifts become more visible in the deeper layers of the network, and (b) confirmed the observation
of Stacke et al.7 that if an image manipulation method decreased the distance between features from the source
and target domain, then the segmentation quality improved. As limitations of our study, we need to stress that
our results do not provide evidence in favor of one or another image manipulation method. That is, our results
do not allow us to predict which image manipulation method will work particular well for a domain shift outside
this study. Further, the training of the AdaAttN model provides another source of uncertainty, since we relied
on visual inspection to determine the quality of the style transfer. In conclusion, our work presents data for the
effectiveness of image manipulation methods and shows that the effect of these methods can also be seen and
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measured in the feature space. Future work could be focused on translating the observed relationship between
the Wasserstein distance and the Dice score into a tool which predicts the segmentation quality and thereby is
useful for selecting and adapting image manipulation methods.
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[4] Niemeijer, J., Ehrhardt, J., Kepp, T., Schäfer, J. P., and Handels, H., “Overcoming the sensor delta for
semantic segmentation in OCT images,” in [Medical Imaging 2023: Computer-Aided Diagnosis ], Iftekharud-
din, K. M. and Chen, W., eds., 34, SPIE, San Diego, United States (Apr. 2023).
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[15] Seeböck, P., Romo-Bucheli, D., Waldstein, S., Bogunovic, H., Orlando, J. I., Gerendas, B. S., Langs, G.,
and Schmidt-Erfurth, U., “Using cyclegans for effectively reducing image variability across oct devices and
improving retinal fluid segmentation,” in [2019 IEEE 16th international symposium on biomedical imaging
(ISBI 2019) ], 605–609, IEEE (2019).
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APPENDIX A. PERFORMANCE FOR TRAIN- AND TEST-MANIPULATIONS

In the main text, we presented only the segmentation quality for the PED. Notably, the effectiveness of the
image manipulations seems to depend on the class to be segmented and on the direction of the domain shift, as
is shown in Figures 6 and 7. While the style transfer using the AdaAttN method presented itself effective for
improving the segmentation performance by turning Spectralis-OCT into SELFF-OCT images, no evidence for
its effectiveness was found for the RETOUCH dataset. On the other hand, the SVDNA method showed itself
beneficial for in- and out of distribution generalization when training DNNs with Spectralis-OCT data. The
N2V method did rarely improve the segmentation quality for the SELFF-OCT/ Spectralis-OCT dataset, but
N2V was useful for segmenting Topcon images.
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Train: Spectralis-OCT
Test: Spectralis-OCT
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Figure 6. Dice scores for the SELFF-OCT/ Spectralis-OCT dataset w.r.t. different data manipulations at training and
test time. From top to bottom the Dice score per class (PED, SRF, choroid, vitreous humor), and the mean is displayed.
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Figure 7. Dice scores for the RETOUCH dataset with respect to different data manipulations at training and test time.
The figure shows from top to bottom the Dice score per class (IRF, SRF, PED) and finally the mean Dice.
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