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ABSTRACT

The main application of optical coherence tomography (OCT) is in the field of ophthalmology, where it is
used for diagnosis of various eye diseases. The automatic segmentation of the individual retinal layers as well as
pathological structures in OCT scans is helpful for clinical examination and treatment planning. Current methods
often do not consider the strict arrangement of retinal layers. Although graph-based methods are suitable for
correcting topology errors, their applicability is costly and complex, especially in the presence of pathologies.
In this work, a segmentation method is proposed that utilizes additional shape information of the retinal layers
to provide improved topology preservation while maintaining simple applicability. For this purpose, a U-Net-
based network architecture is extended to a multi-task approach to allow regression of the shape information
of the retinal layers in addition to pixel-wise classification. This introduces spatial regularization and allows
the generation of plausible segmentations. A consistency term ensures agreement between the classification and
regression task, which also allows for semi-supervised training. In a comprehensive evaluation, the performance
of the proposed multi-task approach is investigated, using OCT image data from patients with diabetic macular
edema. The results demonstrate that the integration of shape information improves the preservation of the
topology of the retinal layers. Moreover, the use of a semi-supervised training scheme via a consistency term
improves the robustness and refines the fluid delineation of the proposed method.
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1. PURPOSE

Diabetic macular edema (DME) is the most common cause of blindness in patients with diabetes.1 As a com-
plication of diabetic retinopathy, DME leads to the growth of abnormal, leaky blood vessels in the macula as
a result of high blood glucose levels. This results in edema within the macula, causing swelling of the affected
area that significantly impairs the sharp central vision. Hemorrhage leads to increased intraretinal fluid near
the inner nuclear as well as outer plexiform layer. The swelling caused by the fluid also results in morpho-
logical deformation or severing of the retinal layers. In the early stages of the disease, retinal damage often
remains unnoticed by the patient, thus regular examinations by the ophthalmologist are crucial. Aside from
funduscopy, OCT is utilized as an imaging modality both for diagnosis and therapy monitoring.2 OCT enables
high-resolution cross-sectional imaging of the retina, allowing detailed visualization of pathological changes as
well as their quantitative evaluation. Here, both the condition of the retinal layers and the fluid accumulations
represent important OCT-based biomarkers that serve as functional predictive factors in DME therapy.3

The retina is composed of several layers that follow a strict hierarchy. To ensure a correct topology, some
early works use graph-based segmentation approaches.4–6 However, the conception of graph models with varying
constraints for individual retinal layers and pathologies is complex and thus reduces the flexibility of segmentation
methods. Current deep learning methods such as fully convolutional networks (FCNs) offer a simpler applicability
together with high segmentation accuracy.7
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Despite their ability to learn highly complex contextual information, topological contexts are not considered by
most current FCN-based methods. To cope with this problem, several FCN-based methods have been proposed
to flexibly incorporate shape and topology information into the segmentation process, reducing costly post-
processing.8–10 To account for the topological locations of individual retinal layers in relation to each other,
Wei et al. propose mutex Dice loss.8 He et al. use a cascade of two U-Nets to segment several retinal surfaces
as well as macular edema.9 While the first network performs pixel-wise classification, the second is used for
post-processing to ensure a correct topology of the retinal surfaces. Fully connected layers at the network’s
output directly regress the distances between the retinal surfaces. In a subsequent work, He et al. combine these
two steps into a unified framework by directly modeling the distribution of surface positions.10

Several works have shown that the inherent shape information of distance maps can be used to regularize the
segmentation process of FCNs.11 Unlike (binary) segmentation masks, whose pixels are divided into foreground
and background, intensities of a distance map correspond to the respective distances to the nearest object
boundary. Often, signed distance maps (SDMs) are used, which depict negative distances within the object
contour. By using SDMs for the segmentation of the synaptic cleft in electron microscope images, Heinrich et
al. achieved the first place on the leaderboard in the CREMI challenge (Circuit Reconstruction from Electron
Microscopy Images, https://cremi.org).12 By regressing SDMs for multi-class segmentation of several retinal
layers and edema in OCT image data, Kepp et al. show that topological errors can be reduced.13 Inspired by
this approach, further work uses SDMs to segment retinal layers. Cao et al. propose a multi-task framework
in their work that regresses retinal layers in the form of SDMs in addition to a pixel-wise classification.14 In a
subsequent work, Liu et al.15 suggest an adversarial learning strategy to focus the FCN on difficult regions in
the OCT image.

Although SDM-based regression improved topology preservation in our previous work,13 it results in fuzzy
fluid boundaries. To address this problem, this paper proposes a multi-task framework using an additional
classification path in parallel with the SDM regression of retinal layers to provide a sharper delineation of fluid
regions. We adapt the dual-task consistency16 (DTC) to increase the consistency between regression and pixel-
wise classification task. The DTC allows a semi-supervised learning strategy, which significantly increases the
amount of available training image data. To avoid stability problems during training, we use a special loss
function.17

2. METHODS

2.1 Dataset

The proposed approach was developed and evaluated using the publicly available Duke OCT dataset introduced
in.18 The dataset consists of a total of ten OCT scans (Heidelberg Spectralis SD-OCT scanner) of patients with
DME. Every scan consists of 61 B-scans, each with a size of 512×740 pixels. Two medical experts manually
annotated seven retinal layers and fluids in eleven B-scans centered at the fovea (distance to foveal B-scan: 0,
±2, ±5, ±10, ±15, ±20) for each OCT scan. This results in a total of 110 annotated B-scans per expert. In
addition to the fluids ( ), the following retinal layers were segmented: retinal nerve fiber layer (RNL ), ganglion
cell layer and inner plexiform layer (GCL-IPL ), inner nuclear layer (INL ), outer plexiform layer (OPL ),
outer nuclear layer and (ONL-ISM ), inner segment ellipsoid (ISE ), outer segments of the photoreceptor cells

(a) Expert 1 (b) Expert 2

Figure 1: Segmentation example of a B-scan by both experts.
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Figure 2: Overview of our proposed MTL segmentation method. In addition to pixel-wise classification, regression
of retinal layers is performed in the form of scaled SDMs (SSDMs). The DTC provides consistency between tasks
and enables semi-supervised training.

and retinal pigment epithelium (OS-RPE ). Combined with the background, the ground truth thus consists
of C = 9 classes. Figure 1 shows an example B-scan with the manual segmentations of both experts. Further
details regarding the dataset are available in the work of Chiu et al.18

2.2 Multi-task Learning for Shape-based Segmentation

By solving multiple tasks with a single FCN, more meaningful feature representations are learned in early layers,
while task-specific representations can be learned in the separate parts of the network. Thus, multi-task learning
(MTL) can achieve higher generalizability than single-task learning (STL). In order to both maximize the number
of shared feature representations and also keep the sum of learnable network parameters small, a multi-head FCN
architecture is used for the proposed MTL segmentation method. A schematic overview of the method is shown
in Fig. 2. As a basis, we use the densely connected U-Net (DCU-Net) proposed in a previous work.19 Compared
to the standard U-Net, the DCU-Net incorporates additional skip connections in its DC blocks for improved
feature reuse. Two 1×1 convolutional layers at the end of the network realize task-specific paths of the FCN.

During the training phase, the segmentation framework receives single B-scans as input and outputs a pixel-
wise classification for each class as well as a regressed scaled SDMs (SSDM) for each retinal layer. Pixel-wise
classification assigns each image pixel x of the input B-scan I to one of C = 9 classes consisting of seven retinal
layers, fluids, and background. Generalized Dice loss (LGDL) is used to train the classification path, which is
computed between the softmax probability P and the ground truth segmentation S. SSDMs of the retinal layers
are estimated via the regression path (LSSDM), which has a regularizing effect on the segmentation and should
lead to better preservation of the topological relations. For this purpose, the individual binary masks of the
retinal layers are selected in the ground truth S (see curly brackets in Fig. 2) and transformed into SSDMs Y .
Fluid and background classes are not regressed using SSDMs, since they do not follow a specific shape. Both
task-specific paths are connected via the DTC (LDTC), which provides consistency between both classified and
regressed retinal layers. For this purpose, the regressed retinal SDMs are converted into pixel-wise segmentations
using an approximated Heaviside function H(z). This allows the use of unlabeled B-scans via a semi-supervised
training strategy. At test time, only the classification path is used to generate the final segmentation S, which
is determined by applying the argmax operator on the pixel-wise class probabilities.

The proposed method is described in more detail in the following sections, including the regression of (S)SDMs,
the dual-task consistency and the semi-supervised training process.



2.2.1 Regression of the Signed Distance Maps

The regression of the SDMs is performed using the ground truth masks Sl. For each class label l, the corre-
sponding SDM can be computed using one-hot encoding as follows:

SDM(x) =

 − infy∈S ∥x− y∥2, x ∈ Ωin

0, x ∈ S
infy∈S ∥x− y∥2, x ∈ Ωout

(1)

where the areas inside and outside the object are represented by Ωin and Ωout. S represents the object’s contours
and ∥x − y∥2 denotes the Euclidean distance between the pixels x and y. The algorithm of Maurer et al.20

is used for an efficient computation of the SDM. SDMs encode segmentation masks into a higher-dimensional
space that contains more complex information about the object’s shape. For example, negative values denote
image areas within the object, while positive values represent background areas. Values near or equal to zero
denote positions near or on the object contour. While small changes in the segmentation mask affect only local
points, they have a larger impact on the SDM and thus lead to larger errors. As a result, SDMs are much more
sensitive compared to (binary) segmentation masks and penalize outliers more severely.21 Since large distances
to the respective retinal layers are not meaningful, scaled SDMs (SSDMs) are used as suggested by Heinrich et
al.:12

SSDM(x) = tanh (SDM(x) · s) . (2)

While s is used to scale the SDM, the tanh nonlinearity effectively saturates all distance values in the range
[−1, 1]. For our experiments, we set s = 0.02.

SSDMs of retinal layers are regressed using the corresponding path in the FCN model (see Fig. 2). For each
retinal layer, a corresponding SSDM is learned. The tanh function is used as a nonlinear activation to constrain
the output to the desired value range. For regression of the SSDMs, the L1 loss function is applied. Regressing
multiple structures with the L1 loss (LL1) may result in unstable training. To solve this problem, Xue et al.
propose a complementary product-based loss function:17

LProduct = −
C−2∑
l=1

∑
x Ŷl(x)Yl(x) + ε∑

x Ŷl(x)Yl(x) +
∑

x Ŷ 2
l (x) +

∑
x Y 2

l (x) + ε
. (3)

Here, Y describes the SSDM ground truth and Ŷ the prediction for the regression path. The parameter ε ensures
numeric stability and is set to 10−5. This product penalizes a wrong sign in the regressed SSDM Ŷ .

A combination of both loss functions is used for the SSDM regression: LSSDM = LProduct+LL1, which results
in larger gradients, thus improving the regression results and making the training more robust.17 Note that
LSSDM is calculated only for the class labels of the retinal layers l ∈ {1, . . . , C − 2} and not for the background
(l = 0) or the fluids (l = C − 1).

2.2.2 Semi-supervised Training

As a result of both tasks, the retinal layers are output as class probabilities on the one hand, and as higher-
dimensional SSDMs on the other. Therefore, it is important that both predictions are consistent with each
other. For this purpose, we adopt the dual-task consistency (DTC) proposed by Luo et al.16 Using the Heaviside
function, the values of the regressed SSDMs can be converted into probabilities. Since the exact Heaviside
function is not differentiable, a smooth approximation is applied:

H(z) =
1

1 + e−z·k , (4)

where z represents the SSDM value at pixel position x and k specifies the slope of the function. According to
Xue et al.,17 we set k = 1500 for our experiments. The DTC is realized via an L1 loss function (LDTC) computed
between H(Ŷl(x)) and Pl(x).

A major advantage of DTC is that no ground truth is needed, since LDTC is determined between the (trans-
formed) predictions of the retinal layers of the regression and classification path (see Fig. 2). This allows for a



semi-supervised training procedure where the 50 unlabeled B-scans of each OCT scan (see Sec. 2.1) can be used
for training in addition to the eleven labeled ones. Pixel-wise classification (LGDL) as well as regression of the
SSDMs (LSSDM) follows supervised training, whereas DTC (LDTC) runs completely unsupervised. The overall
loss function is composed as:

L = LGDL + βLSSDM︸ ︷︷ ︸
supervised

+ γtLDTC︸ ︷︷ ︸
unsupervised

, (5)

with weighting factors β and γt. We set a value of five for β in the experiments. In contrast, γt represents
a time-dependent weighting function that controls the balance between the supervised and unsupervised loss
functions. It is defined as follows:

γt(t) = e

(
−5(1− t

tmax
)
2
)
. (6)

Here, t is the current training epoch and tmax is the total number of training epochs. As a result of γt(t), the
network is trained in a supervised manner in the first epochs. Otherwise, the DTC would prevent the learning of
the subtasks at the beginning of the training. In later stages of training, LDTC gradually receives more weight.

3. RESULTS

For evaluation of the proposed framework, we compare it with several methods. To investigate the advantages of
MTL, the individual subtasks of the presented framework are realized as STL versions. For this purpose, separate
STL frameworks are built based on both the classification path (STLClass.) and the regression path (STLRegr.).
Since the SSDMs can be transformed into pixel-wise classifications using Eq. 4, it seems obvious to perform
regression and classification sequentially without separate task paths. This is consistent with the methodology
of Xue et al.17 and will be referred to as MTLXue. Our proposed method and the associated semi-supervised
learning strategy using DTC are examined via an ablation study. Accordingly, the proposed multi-head FCN is
evaluated without (MTLMH) and with the DTC component (MTLMHDTC

).

The five methods described above are evaluated using leave-one-patient-out cross-validation using the image
dataset described in Sec. 2.1. Since two separate expert annotations are available, we cross-validate twice, each
time using a different ground truth. All B-scans are cropped to exclude irrelevant regions of the image and
to fit the manual annotations that occupy only a smaller portion of the image. For each cross-validation run,
the OCT scans are divided into non-overlapping training, validation, and test datasets in a ratio of 7–2–1.
To cope with the limited amount of available training samples, we perform data augmentation. It consists of
the following components whose parameterization is random: horizontal flip, rotation, translation, scaling and
non-linear intensity shift. To reduce the influence of atypical morphologies, such as in the regions with edema,
we use elastic transformations22 in addition. For quantitative analysis of the segmentation performance, we
determine Dice similarity coefficient (DSC), average symmetric surface distance (ASSD) and Hausdorff distance
(HD). Mean values of these metrics are listed for each structure in Tab. 1 and their distributions are illustrated
as boxplots in Fig. 3. The inter-rater reliability (IRR) between the two ground truths for each metric is also
reported. Moreover, three qualitative segmentation examples are shown in Fig. 4.

All methods achieve high accuracy in segmenting the retinal layers and achieve expert level (IRR) regarding
DSC and ASSD. However, segmentation in the foveal region is difficult because the retinal layers are rather thin
in this region (see Fig. 4). Segmenting the INL, OPL, and ONL-ISM proves to be even more challenging due to
the accumulation of edema fluid in their region. Although the segmentations of the ONL-ISM layer show high
DSC values, their ASSD and HD are considerably larger compared to the other retinal layers, which is due to
its relatively large size. With respect to their layer thickness, both ISE and OS-RPE can be segmented most
robustly, which is also indicated by the small interquartile distances of the corresponding boxplots. In contrast
to the retinal layers, fluid areas are segmented with considerably less accuracy by all methods. The STLClass.

method shows the highest average DSC value of 0.553 for this class. The DSC values of the other methods
are on average 0.522, which corresponds to the IRR level. Despite the separation into two different task paths,
topological errors are mostly avoided. Finally, the DTC achieves smaller interquartile ranges for the DSC values
(see Fig. 3).

As demonstrated in our previous work, sole regression (STLRegr.) achieves a better preservation of the topo-
logical order of the retinal layers (see Fig. 4). The obtained results are on average inferior in comparison to the



STLClass. method and small retinal layer variations are not captured, leading to higher ASSD values. Edema
fluids are difficult to segment with sole regression (STLRegr.) leading to a poor separation and diffuse boundaries.
STLClass. method shows the highest DSC values for the fluid class. However, severe topology errors often occur
in larger fluid regions (see Fig. 4).

By using a subsequent classification (MTLXue), the segmentation accuracy regarding NFL, GCL-IPL, and
INL can be significantly improved compared to the STLRegr. method. Significant improvements can also be
observed affecting HD values for the GCL-IPL, INL, and OPL compared to STLClass.. Qualitatively, it can also
be shown that fluids accumulations are better separated and their boundaries are less diffusely segmented while
considering the topological structure.

Both proposed multi-head approaches (MTLMH and MTLMHDTC
) provide the best segmentation results for

the retinal layers. With only a few exceptions, their results differ significantly from those obtained using the
STL methods. The use of DTC reduced the HD values, which are significantly different except for NFL and
INL. The MTLMHDTC method shows significantly smaller HD values than all STL methods, which only applies
to the first two to four retinal layers (starting at NFL) for the MTLMH variant. In contrast, the ASSD values
of both MTLMH variants did not differ. Regarding the DSC values, significant differences are observed only for
the retinal layers OPL, ONL-ISM and ISE. Fluids are segmented with the MTLMH methods at a similar level
as with the sole regression (STLRegr.). In contrast, the qualitative results (see Fig. 4) show that the use of the
DTC results in a more distinct delineation of fluids.

Table 1: Averaged results of the two cross-validations based on annotations of the respective expert. The best
results are shown in bold.

structures → NFL GCL-IPL INL OPL ONL-ISM ISE OS-RPE Fluid
methods ↓

D
S
C

STLClass. 0.861 0.896 0.782 0.740 0.872 0.859 0.842 0.553
STLRegr. 0.844 0.888 0.779 0.739 0.876 0.857 0.848 0.519
MTLXue 0.856 0.896 0.784 0.745 0.877 0.859 0.845 0.520
MTL 0.869 0.900 0.791 0.758 0.882 0.863 0.852 0.530
MTLDTC 0.871 0.902 0.796 0.746 0.877 0.866 0.853 0.522
IRR 0.846 0.888 0.770 0.724 0.868 0.847 0.842 0.522

A
S
S
D

STLClass. 1.46 1.64 1.96 2.07 2.36 1.13 1.18 –
STLRegr. 2.70 1.80 2.27 2.16 2.63 1.16 1.16 –
MTLXue 2.49 1.64 2.06 2.09 2.43 1.17 1.20 –
MTL 1.58 1.56 2.12 1.99 2.52 1.10 1.13 –
MTLDTC 1.40 1.53 1.93 1.91 2.32 1.06 1.14 –
IRR 1.70 1.76 1.92 1.87 2.17 1.17 1.19 –

H
D

STLClass. 13.80 12.13 15.34 15.83 19.04 5.97 5.86 –
STLRegr. 21.00 11.00 14.39 15.91 20.20 5.34 4.67 –
MTLXue 17.98 9.71 13.74 15.25 19.23 6.29 5.40 –
MTL 13.16 9.20 13.29 14.84 20.10 5.05 5.27 –
MTLDTC 11.83 8.55 12.22 12.98 17.80 4.62 4.30 –
IRR 13.60 9.33 11.78 11.20 17.83 4.48 4.38 –

4. CONCLUSIONS

The evaluations show that the topology of the retinal layers is better preserved by SSDM regularization than by
the sole classification (STLClass.). However, using only regression (STLRegr.) leads to a decrease in segmentation
accuracy. The results indicate that this is often due to segmentation defects in the compressed upper retinal
layers caused by large edema swellings. Also, finely defined fluid inclusions tend to be segmented as a diffusely
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Figure 4: Visualization of three exemplary segmentations. From top to bottom: B-scan, ground truth, STLClass.,
STLRegr., MTLXue, MTLMH, MTLMHDTC

.



connected area. A reasonable explanation for this is that fluids, unlike retinal layers, do not follow a specific
shape and are expressed differently depending on their location.

Improved fluid delineation could be demonstrated by adding another classification task (MTLXue). The
segmentation quality of the retinal layers could also be optimized by this method. It appears that the direct
coupling to the SSDMs utilizing the approximated Heaviside function leads to similar problems, as the upper
retinal layers are often incompletely segmented.

On average, the MTL methods achieve the best results in terms of retinal layer segmentation. A higher
generalizability is achieved by learning through separate task paths, which prevents overfitting. At the same
time, feature representations are learned that are preferred by both tasks. This focuses on relevant features,
especially when there is only a small amount of available training image data that also shows large variations
due to the DME disease. With the help of the DTC, consistency between both tasks can be established, and
reciprocal support can be ensured. This coupling is not as strict as in the MTLXue method, allowing flexibility
in the individual tasks. The application of DTC demonstrates that the use of additional unlabeled image data
can improve robustness and refine fluid delineation. Segmentation results of the MTLMHDTC

method have the
least amount of topology errors, which otherwise result in costly post-processing.

In general, fluid segmentation in OCT image data remains a challenging task. While problems such as strong
class imbalance can be addressed by special error functions23 or sophisticated sampling strategies, residual
uncertainty remains in the delineation of individual fluid regions. Due to a weak image contrast in these regions,
even manual identification is often ambiguous. This is also confirmed by the very different segmentations of the
fluids of the two experts (see Fig. 1) resulting in a low IRR. Similar results can be found in the evaluations of
the RETOUCH fluid segmentation task.24 Therefore, the determination of segmentation uncertainties is a useful
extension. For clinical application, uncertain segmentation regions can be identified and serve as complementary
feedback for interpretation.25 In conclusion, this work provides an important contribution to the challenging
problem of retinal layer segmentation in the presence of fluid inclusions. Our proposed method allows for
improved segmentation accuracy while effectively accounting for the topological properties of the retinal layers.
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