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ABSTRACT

Although 4D CT imaging becomes available in an increasing number of radiotherapy facilities, 3D imaging and
planning is still standard in current clinical practice. In particular for lung tumors, respiratory motion is a
known source of uncertainty and should be accounted for during radiotherapy planning – which is difficult by
using only a 3D planning CT. In this contribution, we propose applying a statistical lung motion model to
predict patients’ motion patterns and to estimate dosimetric motion effects in lung tumor radiotherapy if only
3D images are available. Being generated based on 4D CT images of patients with unimpaired lung motion, the
model tends to overestimate lung tumor motion. It therefore promises conservative risk assessment regarding
tumor dose coverage. This is exemplarily evaluated using treatment plans of lung tumor patients with different
tumor motion patterns and for two treatment modalities (conventional 3D conformal radiotherapy and step-&-
shoot intensity modulated radiotherapy). For the test cases, 4D CT images are available. Thus, also a standard
registration-based 4D dose calculation is performed, which serves as reference to judge plausibility of the model-
based 4D dose calculation. It will be shown that, if combined with an additional simple patient-specific breathing
surrogate measurement (here: spirometry), the model-based dose calculation provides reasonable risk assessment
of respiratory motion effects.
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1. PURPOSE

Although 4D(=3D+t) CT imaging is becoming increasingly important in radiotherapy of thoracic and abdominal
tumors (at least in the US and other industrialized countries), 3D CT is still the basis for treatment planning
in the majority of medical facilities.1 However, motion amplitudes of especially lung tumors can be up to three
or more centimeters even during regular breathing.2 By 3D CT-based radiotherapy treatment planning, exact
patient-specific tumor motion patterns and amplitudes are not known by definition and treatment margins are
dimensioned (more or less) empirically. As treatment planning is always a tradeoff between increasing safety
margins to ensure dose coverage of the tumor and decreasing them to spare normal tissue, even a relatively vague
risk assessment (in the sense of “What would be the dosimetric/outcome consequences of under-/oversizing the
margins?”) could provide valuable information for radiotherapists and lung tumor treatment – especially in the
absence of temporally resolved planning data.

Based on the assumption that in principle the physiology of breathing should be similar for different indi-
viduals, we recently presented an approach for generation of a mean lung motion model (4D-MMM = 4D Mean
Motion Model) based on a collective of thoracic 4D CT image sequences.3 In this contribution we propose apply-
ing the 4D-MMM for estimation of the (dosimetric) impact of respiratory motion in 3D radiotherapy planning of
lung tumors. Currently, the 4D-MMM represents the mean lung motion in data sets unaffected by lung patholo-
gies. Aiming at lung tumor motion prediction, the model motion patterns have been shown to be representative
for small lung tumors not attached e.g. to the chest wall or the mediastinum; otherwise the model tends to
overestimate tumor motion. This, in turn, means that lung tumors which are adherent to non-lung structures or
larger in size hinder (at least local) lung dynamics.4 This interpretation is in wide agreement with the findings
of Plathow et al. and Liu et al. who analyzed lung tumor motion patterns in extensive patient collectives.5, 6

They demonstrated that larger tumors exhibit less motion than smaller ones (even for similar positions inside
the lung) and that motion is more pronounced in the contralateral lung than in the ipsilateral lung containing
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lesions. While this can be seen as a drawback in modeling and the 4D-MMM construction itself, we consider this
to be advantageous in the case of assessing dosimetric motion effects: Regarding clinically relevant tumor dose
coverage the effects will be overestimated if using the 4D-MMM for estimation of the patient’s tumor motion.
The model-based assessment therefore represents a risk assessment in the sense of a worst-case scenario.

When adapting the 4D-MMM to a particular patient, the mean motion model can be used directly to transfer
motion patterns representing the mean depth of breathing in the patient collective underlying model generation.
This, of course, is only a rough approximation of patient-specific breathing patterns. To become closer to
the patient’s individual lung motion patterns, we further suggested measuring a (simple) breathing signal (e.g.
spirometry or bellows belts) and scaling the model depth of breathing according to the measurements during
adaptation of the 4D-MMM. Here, we analyze both approaches: We first assume that (in agreement with 3D
radiotherapy planning practice) only a 3D CT image is available for planning. Consequently, in a first run the
unscaled model is adapted to the patients’ anatomy to assess motion effects on the (statically planned) dose
distribution. Intending to achieve a more precise motion estimation, we then scale the model depending on
patient-specific spirometry measurements and again analyze dosimetric motion effects. However, for all patients
4D CT data sets are available. Thus, based on motion field estimation by registration of the 3D CT frames of the
4D CT image sequences we also perform a standard 4D dose calculation by dose accumulation for each patient.
The resulting dose distribution serves as comparison case to judge plausibility of the model-based estimation of
dosimetric motion effects and model-based 4D dose calculation, respectively.

2. METHODS

The proposed workflow for model-based risk assessment basically consists of four steps: generation of the 4D-
MMM, adapting the 4D-MMM to the planning 3D CT of the patient to be considered (plus incorporating
additional patient-specific motion information if they are available), estimating patient-specific 4D dose distribu-
tions (= dose accumulation) using a precomputed 3D treatment plan and the motion information provided by the
4D-MMM, and finally evaluating resulting dosimetric measures/motion effects. Both the 4D-MMM generation
and a dose accumulation in general are based on image registration. This section therefore starts with a brief
description of the registration approach applied in this study (Sec. 2.1). The principles of the model generation
and adaptation process and dose accumulation are then explained in Sec. 2.2 to 2.4. To keep the single method-
ical sections as compact and comprehensible as possible, we will not go into too many technical details. Instead,
the interested reader will be referred to related publications for further information on the topics covered.

2.1 Diffeomorphic registration for motion estimation and atlas-patient matching

Comprising the tasks of intra-patient registration in 4D CT image sequences (to assess breathing motion informa-
tion for individual subjects) and interpatient or patient-atlas matching (to establish a common coordinate system
for all patients; cf. the following section), we apply a diffeomorphic non-linear intensity-based non-parametric
registration scheme as described in detail in Schmidt-Richberg et al.7 As part of a multi-institutional study on
thoracic image registration the accuracy of our registration implementation has been proven to be in the order
of voxel size when applied for intrapatient registration of thoracic CT images.8

Implemented within a classical variational registration approach (D: distance measure, S: smoothness or
regularization term. α: weighting coefficient), i.e.

J [ϕ] = D [Iref, Itar ◦ ϕ] + αS [ϕ]
ϕ−→ min , (1)

the basic idea is to search for a transformation ϕ : Ω → Ω that minimizes a normalized variant of the
sum of squared intensity differences between a reference image Iref and the transformed target image Itar ◦ ϕ
(Iref, Itar : Ω → R). To prevent ill-posedness of the minimization problem, a diffusion regularization approach
is adopted. Aiming at diffeomorphic transformations and exploiting the Lie group-like structure of the group of
diffeomorphisms on Ω (see e.g. Arsigny et al.9 for the mathematical background) the sought transformation is
parameterized by a velocity field v : Ω → R3, i.e.

ϕ = exp (v) . (2)
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The exponentiation map ensures ϕ to be diffeomorphic if the velocity field is sufficiently smooth (note that v is a
standard, not necessarily diffeomorphic transformations on Ω).10 Here, to guarantee smoothness, the regularizer
S of Eq. 1 acts directly on v.

Besides restricting resulting transformations to being diffeomorphisms, which itself can be considered a “nat-
ural choice in the study of anatomy as [...] smoothness of anatomical features [...] is preserved, and coordinates
are transformed consistently”,11 the chosen registration approach additionally features an efficient computation
of inverse transformations via ϕ−1 = (exp (v))

−1
= exp (−v). This property will later be advantageous especially

in the context of the 4D-MMM generation and model adaption to a patient.

2.2 Generation of the mean lung motion model

The model generation process applied in this study is explained in detail in Ehrhardt et al.3 where we would
like to refer to for further information; the basic idea can be summarized as follows:

Given a collective of 4D image sequences of different patients, the generation of the mean lung motion model
consists of four steps. At the beginning, subject-specific motion fields are estimated in the 4D image sequences
of the different patients by non-linear registration with respect to a common reference breathing phase (here:
using the diffeomorphic registration as described above). Thus, let (Ip,j)j∈{1,...,nPh} denote the image sequence

of patient p ∈ {1, . . . , nPat} with j representing the different breathing phases. We further assume that for the
different patients the breathing phases correspond to each other; consequently, no temporal alignment of the
sequences is required. Then, the first modeling step yields a series of transformation sequences (Φp)p∈{1,...,nPat}
with Φp = (ϕp,j)j∈{1,...,nPh} being the transformations to match Ip,j and the reference image Ip,ref.

In the second step, a 3D average shape and intensity model, also called lung atlas, is generated from the
reference images Ip,ref of the different patients. To provide a bias-free atlas we adopt an atlas generation technique
proposed by Guimond et al.:12 The reference image of a randomly selected patient is chosen as an initial atlas.
The reference images of the other patients are then registered to the initial atlas (affine pre-registration, followed
by a non-linear diffeomorphic registration) and transformed to fit the atlas coordinate system. Within the atlas
coordinate system the intensities of the transformed CT images are averaged, resulting in a mean intensity image.
Finally, an average patient-atlas transformation is computed and its inverse applied to the mean intensity image.
The result defines a new atlas (in the sense of a mean intensity and shape image), and the former steps are
iterated until convergence.

In detail, we use the Log-Euclidean framework for computing the average transformations to ensure resulting
patient-to-atlas transformations

ψp = exp (wp) : Ωp → ΩA, (3)

being diffeomorphic (please note that in our case Ωp = ΩA; the differentiation between patient and atlas coor-
dinate system is made to facilitate understandability of subsequent explanations). This step finally results in a
mean intensity and shape image Īref : ΩA → R and a series of transformations, (ψp)p∈{1,...,nPat}, mapping the

patient-specific reference images Ip,ref to the atlas coordinate system.

In the third step, the generated average shape and intensity model is used as anatomical reference frame to
match the estimated subject-specific motion fields ϕp,j to the atlas coordinate system. This is accomplished by

ϕ̃p,j = ψp ◦ ϕp,j ◦ ψ−1
p = exp (wp) ◦ exp (vp,j) ◦ exp (−wp) , (4)

and analogously for the velocity fields. Thus, this step yields a series of patient-specific transformation sequences
(ϕ̃p,j)j∈{1,...,nPh} and corresponding velocity fields, but defined in the atlas coordinate system (i.e. ϕ̃ : ΩA → ΩA).

In the fourth and final step, these transformations are averaged by

ϕ̄j = exp (v̄j) = exp

(
1

npat

npat∑
p=1

ṽp,j

)
, (5)

resulting in a series of mean transformations (ϕ̄j)j∈{1,...,nPh}. Together, (ϕ̄j)j∈{1,...,nPh} and the mean shape and

intensity image Īref define a mean lung motion model 4D-MMM.
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2.3 Adaptation of the mean lung motion model for patient-specific motion estimation

For adaptation of the 4D-MMM to predict lung motion of a patient s, the average mean and intensity image
Īref is first registered to the patient’s 3D CT Is. Thereby, we assume the breathing phase of the patient’s CT Is
to be corresponding to the reference phase chosen for the 4D-MMM generation. The resulting transformation
ψs : Ωs → ΩA is used to transfer the motion information from the atlas to the patient coordinate system. Similar
to Eq. 4, this can be done using directly the mean motion fields of the 4D-MMM. Then, the predicted motion
between the reference breathing phase and another phase j would be given by

ϕ̂s,j = ψ−1
s ◦ ϕ̄j ◦ ψs. (6)

However, by only accounting for the mean motion of the patient collective the potential occurence and conse-
quences of interpatient differences in the depth of breathing are neglected. Thus, in this article we propose to
scale the mean fields wrt. additional patient-specific measurements, i.e. we use

ϕ̂λ
s,j = ψ−1

s ◦ ϕ̄λ
j ◦ ψs = ψ−1

s ◦ exp (λv̄j) ◦ ψs (7)

instead of Eq. 6 for prediction purposes.

As a proof of concept, in this study we will use spirometry measurements for dimensioning the scaling
parameter λ. This will be detailed in Sec. 3.

2.4 Radiotherapy treatment planning and principles of dose accumulation

In this contribution we consider two radiotherapy treatment planning modalities: Conventional 3D conformal
radiotherapy (3D CRT) and step-&-shoot intensity modulated radiotherapy (IMRT). 3D plans are created with
a prescribed dose to the tumor of 50 Gy (fractionation: 25×2 Gy) and standard safety margins (approximately
10 mm isotropic margin between the gross tumor volume [GTV] and the planning target volume [PTV]).

To analyze the impact of respiratory motion on the (planned) dose distributions, i.e. to estimate the dose
which will actually be delivered to the patient for a given treatment plan and incorporating knowledge about
breathing motion, the technique of dose accumulation (also called 4D dose calculation) is employed. This means
that estimated motion fields are applied to track the voxels of the reference frame over the breathing cycle and
the dose received by the voxels at the different breathing phases is accumulated. Mathematically formulated, we
compute a dose D4D : Ω → R+ by integrating the dose rate Ḋ : Ω×R → R+ over the time of treatment T ,

D4D (x) =

∫
T

Ḋ (x (t) , t) dt =

nFields∑
k=1

∫
Tk

Ḋ (x (t) , t) dt. (8)

Thereby, the voxel trajectory over a breathing cycle is usually approximated by x (t) = (ϕ1 (x) , . . . , ϕnPh
(x))T

with the fields ϕj resulting from registration of the frames of a patient-specific 4D CT image sequence to the
planning CT frame. The summation in the last part of Eq. 8 further accounts for the fact that a radiotherapy
treatment plan usually comprises different irradiation angles and irradiation fields, respectively. In the case of
IMRT, the single fields additionally consist of a number of so-called subfields or segments of potentially short
irradiation times. The additional segmentation of the fields finally results in slightly different accumulation after
temporal discretization of Eq. 8, which will be explained below.

However, following Eq. 8 it can be seen that the principle of model-based 4D dose calculation (i.e. using
the 4D-MMM) and 4D dose calculation by means of patient-specific 4D CT data are similar; one basically
replaces the fields ϕj by the model-based predictions ϕ̂j and ϕ̂λ

j , respectively. Differences occur only in detail:
Based on patient-specific 4D CT images in standard dose accumulation 3D dose distributions corresponding
to the original 3D treatment plan are calculated for all breathing phases and further used to approximate the
continuously defined dose rate. Thereby, one accounts for density variations in the lungs due to breathing. For
model-based dose calculations, we do not recalculate static dose distributions for any other than the planning
phase as we assume the planning 3D CT to be the only image available.
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(a) (b)

Figure 1. Principle of dimensioning the factor λ used for scaling the 4D-MMM mean motion fields when adapting the
fields for subject-specific motion prediction: For the patient’s spirometry records the maximum peaks of the individual
breathing cycles are determined and sorted into a histogram [Figure (a)]. A Gaussian function is then fitted to the
distribution of the volumes [Figure (b)]. We finally aim to capture the change of air content of the patient’s lungs which
corresponds to the mean plus one standard deviation of the Gaussian function when applying the scaled 4D-MMM mean
motion field between the reference phase and end-inspiration to the patient’s reference CT. For comparison purposes, the
tidal volume corresponding to the application of the unscaled 4D-MMM is also indicated as part of the figures.

2.4.1 Conventional 3D conformal radiotherapy

For conventional 3D conformal radiotherapy, the irradiation times for single treatment fields can be assumed to
be long in comparison to the patient’s breathing period. In this case, discretization of Eq. 8 yields a quite simple
formula for calculation of the 4D dose to a voxel x ∈ Ω, given by

D4D,CRT (x) :=
1

nPh

nPh∑
j=1

Dj (ϕj (x)) (9)

(see e.g. Werner et al.13 for more information on the derivation). Dj denotes the dose for the 3D treatment
plan, but computed for the patient’s CT at breathing phase j (∀j : Dj = Dref for model-based dose calculation).
ϕj is the motion field estimation between the planning/reference phase and j (to be replaced by ϕ̂j and ϕ̂λ

j for
4D-MMM-based dose accumulation).

2.4.2 3D (step-&-shoot) intensity modulated radiotherapy

The situation becomes more complicated for IMRT because segment irradiation times can be shorter than the
breathing cycle. Thus, the 4D dose has to be calculated using segment-specific weighting coefficients, i.e.

D4D,IMRT (x) :=

nFields∑
k=1

nPh∑
j=1

αk,jDk,j (ϕj (x)). (10)

k denotes the individual IMRT segments and Dk,j the dose distribution yielded by delivery of the k-th segment
at breathing phase j. The specific value of a coefficient αk,j depends on factors such as the segment irradiation
length and the breathing phase at the beginning of its delivery; for details on the dimensioning of the coefficients
for step-&-shoot IMRT please refer again to Werner et al.13

3. RESULTS

To demonstrate feasibility of model-based dose accumulation and evaluate suitability of the 4D-MMM for risk
assessment in 3D radiotherapy, we proceed as follows: Based on 3D CRT and 3D step-&-shoot IMRT treatment
plans for three lung tumor patients with significant tumor motion amplitudes (i.e. tumor motion magnitude
>5m; cf. Keall et al.2) we perform 4D dose calculations as described in the methods section by (a) using the
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Conv. 3D conformal radiotherapy Intensity modulated radiotherapy

Tumor Motion min./max. max. CTV dose min./max. max. CTV dose
motion field CTV dose differences to plan CTV dose differences to plan

#1 12.2 mm ϕ 94.2 / 103.0% 6.3% 93.1 / 111.4% 8.9%
ϕ̂ 88.3 / 103.4% 12.1% 92.5 / 110.7% 11.6%
ϕ̂λ=1.1 84.8 / 103.0% 15.6% 91.7 / 110.6% 14.1%

#2 6.7 mm ϕ 98.6 / 105.6% 1.3% 94.7 / 108.2% 3.5%
ϕ̂ 98.4 / 105.8% 2.9% 94.5 / 106.4% 4.3%
ϕ̂λ=1.15 97.8 / 105.7% 3.5% 94.1 / 106.1% 4.9%

#3 19.6 mm ϕ 92.3 / 102.0% 7.4% 90.8 / 112.3% 11.7%
ϕ̂ 96.2 / 103.9% 4.7% 91.6 / 110.9% 13.6%
ϕ̂λ=1.25 93.3 / 103.8% 7.5% 89.2 / 109.1% 16.1%

Table 1. Dosimetric quantities for evaluation of motion-induced effects inside the clinical target volume CTV, given in
percentage of the prescribed single fraction dose. For IMRT dose accumulation the values depend on parameters such
as the breathing phase at the beginning of the irradiation delivery; the entries listed here correspond to the worst case
scenarios considered.13

patient-specific 4D CT data set and registration-based motion-field estimation therein [serves as ground truth for
evaluation], (b) applying the unscaled mean motion field of the 4D-MMM for prediction of the patient’s motion
patterns, and (c) by adapting the 4D-MMM by means of patient-specific spirometry measurements. The data
collective for generation of the 4D-MMM consists of 12 4D CT data sets of patients without obvious impairment
of breathing physiology. The three lung tumor patients acting as test cases are not part of the model training set.
Due to computational efforts we restrict the breathing phases modeled to end-inhalation (EI), end-exhalation
(EE), mid-inhalation (MI), and mid-exhalation (ME); end-inhalation serves as reference breathing phase.

As written in Sec. 2.3, in this study we propose to dimension the factor λ for scaling the 4D-MMM mean
motion fields by analyzing spirometry records of the patients’ breathing. In our case, they were acquired during
the 4D CT image acquisition for retrospective image reconstruction.14–16 The principle of dimensioning λ is
illustrated in Fig. 1. For each patient, we identify the maximum peaks of the record and fit a Gaussian function
to the distribution of corresponding spirometry volumes. The spirometry-measured volume is proportional to the
change of the air content of the patient’s lungs, with a constant of proportionality of 1.11 that can be explained by
the ideal gas law.16, 17 Now, let μs,spiro and σs,spiro denote the mean and the standard deviation of the Gaussian
fit for subject s and ΔVs,air = 1.11 · (μs,spiro + σs,spiro) a respective change in the lungs air content. Then, we
determine the sought scaling factor λ by

∣∣(Vs,air (Is,EI)− Vs,air
(
Is,EI ◦ ϕ̂λ

s,EE

))−ΔVair
∣∣ λ−→ min . (11)

For details on the computation of the air content Vs,air in CT images please again refer to Ehrhardt et al.3 For
the three patients of this study, λ was between 1.10 and 1.25 (see also Table 1).

Examples of the planned 3D dose and the accumulated dose distributions resulting from patient-specific
motion field estimation by registering the CT frames of the patient’s 4D CT image and estimated by application
of the scaled mean 4D-MMM fields are shown in Fig. 2 (data: patient 1; treatment modality: 3D-CRT); it becomes
obvious that the accumulated dose distributions look very similar. Additionally, differences between the planned
and the accumulated dose distributions are shown in Fig. 2. The figure confirms the hypothesis underlying
this contribution: At least for the patient considered, the 4D-MMM-based overestimates the dosimetric motion
effects; it therefore presents a conservative risk assessment.

For further quantitative evaluation purposes we concentrated on motion effects on dosimetric quantities for
the clinical target volume (CTV; i.e. tumorous tissue to receive within 95% and 107% of the prescribed dose
according to international guidelines18). We considered the 95%- and 107%-doses with regard to the work-flow
of 3D radiotherapy planning: If CTV voxels are observed which receive (according to the 4D dose estimation)
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Figure 2. Illustration of model-based risk assessment for motion effects in 3D radiotherapy. From left to right: the dose
distribution for patient 1 as planned (3D CRT; transversal and sagittal view), the 4D dose estimation as calculated by
using the patient’s 4D CT data and registration-based motion estimation therein, and a 4D dose estimation resulting
from the application of the scaled 4D-MMM mean motion fields.

Figure 3. Differences between the planned and the accumulated dose for patient 1 (red = larger differences). The dose
distributions compared are the same as shown in Figure 2. Left: Difference wrt. the dose accumulated by using the patient-
specific 4D CT image sequence. Right: Difference wrt. the dose accumulated by application of the scaled 4D-MMM. It
can be seen that the 4D-MMM-based dose accumulation yields an overestimation (or conservative risk assessment) of the
dosimetric motion effects to be expected.

a dose outside the interval, this can be interpreted as indicating the need for redesigning the treatment plan.
Corresponding dosimetric quantities for the three patients considered are summarized in Table 1. Again, it can
be seen that values and consequences are widely in agreement, especially when comparing the dose distributions
accumulated based on the patient-specific 4D CT image data and using the scaled 4D-MMM.

4. CONCLUSIONS

Model-based 4D dose calculation will not replace 4D CT imaging or diminish the need (and wish) for temporally
resolved imaging modalities, but it promises to provide a reasonable risk assessment if only 3D CT is available in
radiotherapy planning of lung tumors. This is primarily due to the fact that the 4D-MMM tends to overestimate
tumor motion. It should nevertheless be noted that in particular cases it may happen that tumor motion and
consequently dosimetric motion effects are underestimated (especially when applying the unscaled 4D-MMM; cf.
results for patient 3). In the current study, combining the 4D-MMM with additional patient-specific spirometry
measurements helped to obviate the risk of motion underestimation. The study, however, represents only a first
feasibility study; further investigations with a larger number of patients and treatment plans will be necessary.
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