
Pulmonary Lobe Segmentation with Level Sets

Alexander Schmidt-Richberg, Jan Ehrhardt, Matthias Wilms, René Werner and Heinz Handels
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ABSTRACT

Automatic segmentation of the separate human lung lobes is a crucial task in computer aided diagnostics and
intervention planning, and required for example for determination of disease spreading or pulmonary parenchyma
quantification.
In this work, a novel approach for lobe segmentation based on multi-region level sets is presented. In a first step,
interlobular fissures are detected using a supervised enhancement filter. The fissures are then used to compute
a cost image, which is incorporated in the level set approach. By this, the segmentation is drawn to the fissures
at places where structure information is present in the image. In areas with incomplete fissures (e.g. due to
insufficient image quality or anatomical conditions) the smoothing term of the level sets applies and a closed
continuation of the fissures is provided.
The approach is tested on nine pulmonary CT scans. It is shown that incorporating the additional force term
improves the segmentation significantly. On average, 83% of the left fissure is traced correctly; the right oblique
and horizontal fissures are properly segmented to 76% and 48%, respectively.
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1. PURPOSE

Human lungs consist of five separate lobes, three in the right lung and two in the left. The lobes have individual
bronchial and vascular systems and are functioning relatively independent from each other. A robust segmenta-
tion of the individual lobes is required for many applications in computer aided diagnostics and intervention. For
example, it is clinically important to determine if affections in early stages are confined to single lobes, since the
interlobular fissures stem the spread of diseases. Moreover, accurate segmentations are required to characterize
and quantify malfunctions like residual pulmonary parenchyma.1

Lobe segmentation can be a very challenging task if images lack in quality or if anatomical anomalies occur.
Therefore and due to its clinical relevance, a wide variety of approaches has been proposed. Most methods start
from a segmentation of the interlobular fissures to separate the lobes. Wang et al.2 propose a curve-growing
process based on image features and atlas information to segment the fissures. Among others, Wiemker et al.3

and Lassen et al.4 propose a fissure enhancement based on the eigenvectors of the Hessian, similar to the vessel-
ness measure. Van Rikxoort et al.5 extend this approach to a supervised learning method based on the second
order derivatives of the image. Most of these approaches perform well if images are of reasonably good quality.
However, a detection of the fissures is often not sufficient to separate the lobes because fissures are incomplete
for many subjects due to anatomical conditions or severe lung diseases.6 Moreover, bad image quality and
insufficient spatial resolution can cause fragmentary segmentations. This is addressed by Pu et al.7 using an
implicit surface fitting with different radial basis functions. Van Rikxoort et al.8 instead propose an atlas-based
completion of the fissures. A MAP-based sampling of fissure particles considering image features followed by
a TPS interpolation is used by Ross et al.9 Zhang et al.10 use a fuzzy decision system considering image and
atlas information for lobe segmentation. Ukil et al.11 later apply Fast Marching Methods to complete fissures
in projection images.
In this work, we propose an alternative approach based on level sets to segment the pulmonary lobes. Here,
fissure-enhancing techniques are used to define an additional force term that draws the level set to the fissures.
In image regions with insufficient fissure information, a smooth completion of the fissures is estimated by the
level sets and thus closed objects are guaranteed.
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2. METHODS

Level sets12 have been proven to be a viable tool for various segmentation tasks in medical imaging. Due to
the implicit formulation of the object boundary, level sets require no parametrization and are independent of a
specific topology or dimensionality. Furthermore, object boundaries described by level sets are always closed.
The formulation as an energy minimization task allows flexible adaption to specific problems.
In this work, an additional force term is proposed for the level set framework that attracts the segmentation
to the fissures in the image. This force is designed to be neglectable in regions with high image contrast –
e.g. near the boundaries of the lung – and high in a proximity to the fissures. The fact that level sets always
represent closed objects is exploited in cases with incomplete fissures: In regions where neither image nor fissure
information is present (be it due to lacking image quality or anatomical conditions), a smooth continuation is
estimated by the level sets.
In the following, level sets are briefly introduced in section 2.1 including an extension to multi-object segmenta-
tion. A new fissure attraction force is proposed in section 2.1.2. Thereafter, an atlas-based initialization of the
segmentation approach is examined and details of the implementation are given.

2.1 Level set segmentation

Let I(x) : Ω �→ R
d be an image with the domain Ω ⊂ R

d and Σ ⊂ Ω an object in the image. Its boundary is
represented implicitly as the zero-level curve of the level set function φ(x) : Ω �→ R

d. Here, φ is defined as the
distance function to the boundary with φ(x) < 0, if x ∈ Σ and φ(x) > 0, if x ∈ Ω\Σ. The optimal level set is
determined by minimizing the energy functional

J [φ] := E [I;φ] + αI[φ] . (1)

The functional consists of two terms. The region-based external energy

E [I;φ] := −
∫
Ω

(1−H(φ(x)) log pin(I(x))) + H(φ(x)) log pout(I(x)) dx

integrates a-priori knowledge about intensity distributions pin inside and pout outside the lungs, respectively,
and draws the segmentation to the lung boundaries. These distributions can be estimated by sampling lung and
background voxels using a Parzen-Window strategy.13 The Heaviside function H is used to describe inside and
outside of the object.
The internal energy is defined as

I[φ] =
∫
Ω

∇H(φ(x)) dx

and enforces a smooth surface. For the minimization with respect to the level set function, the Euler-Lagrange
equation is derived and a gradient descent is performed according to

∂φ

∂t
= −δ(φ)

(
− log

pout
pin

− α∇ ∇φ

‖∇φ‖
)

.

Using this approach, one object of arbitrary topology can be segmented, e.g. the human lungs.

2.1.1 Level sets for multiple objects

To simultaneously segment the five pulmonary lobes, an extension of the level set framework has to be employed
to handle multiple objects. Here, we follow the approach proposed by Brox et al.14 The level set framework is
extended by employing N functions φi, i = 0, . . . , N − 1, each representing one object Σi := {x : φi(x) < 0}.
The energy (1) is minimized under the constraints

⋂
iΣi = ∅ and

⋃
iΣi = Ω. The evolution equation then reads

∂φi

∂t
= −δ(φ)

(
ei − max

H(φj)<0,j �=i
(ej , ei − 1)

)
with ek := log pk − α

2
∇ ∇φk

‖∇φk‖ . (2)

In this formulation, ei serves as a (mostly outwards-directed) force that is applied to the level set φi. The
final update value is determined by a competition of this force and the maximal force of all adhering level set
functions. The additional term ei − 1 balances the force if no other object is in the proximity.
For lobe segmentation, we have N = 6 objects (background and five lobes) and set p0 := pout and pi := pin for
i = 1, . . . , 5. The final segmentation Si : Ω �→ {0, 1} of lobe i is then Si := 1−H(φi).
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Figure 1. Computation of the cost image: a) the CT image I ; b) the fissureness F image as output of the knn classifier;
c) the skeleton K of the post-processed fissureness image (dilated by one voxel to enhance visibility); d) the cost image
C, which is incorporated in the force term.

2.1.2 Level sets with fissure-attraction forces

Using the model described above, only a smoothing is performed between two lobes because pi equals pj in these
cases. Therefore, we define an additional term that draws the contour to the fissures.
In the first step, the interlobular fissures are segmented automatically. Since we want to prevent the level sets
from being attracted by structures wrongly classified as fissures, we aim at a high specificity at the expense
of sensitivity. Following previous studies,15 we therefore chose the automatic supervised enhancement filter
proposed by van Rikxoort et al.5 The general idea is to sample intensity- and shape-based features at fissure-
and non-fissure voxels of training images with known fissure segmentations and then train a statistical classifier
to recognize the fissures in a test image.
Following van Rikxoort et al.,5 a set of 57 features is identified. These are – each computed on four different
scales with smoothing weight σ = 1, 2, 4, 8 – the grayvalue (4 ·1 feature), the gradient components (4 ·3), gradient
magnitude (4 · 1), the components of the Hessian matrix (4 · 6) and its eigenvalues (4 · 3) as well as the original
grayvalue (1). A subset of these features is used to train a k-nearest neighbors (knn) classifier with k = 15.
Moreover, a two-phase strategy is applied; that means, the output of the first run of the classification is used as
input for a second run. This procedure significantly reduces the influence of background noise.
The classifier provides a fissureness image F : Ω �→ {0, . . . , k} in which each voxel value indicates the number
m ≤ k of the k nearest neighbors that were classified as fissure. Again aiming for high specificity, this image is
then thresholded atm ≥ 14 and a morphological closing followed by a connected-component analysis is performed
to exclude small structures caused by noise.
The final goal is to define a cost image that is zero at the fissures and high apart from them. We therefore proceed
by computing the topological skeleton K of the fissure segmentation and defining the cost image C : Ω �→ R by
C(x) :=

√
distK(x) where distK(x) is the Euclidean distance of point x to the skeleton K. With this, the force

term in eq. (2) can be reformulated to incorporate a fissure-attraction force by

ek := log pk − α

2
∇ ∇φk

‖∇φk‖ − β

2
∇φk · ∇C . (3)

The steps required for computing the cost image are illustrated in Figure 1.

2.2 Atlas-based initialization

The initialization of the level set segmentation is done by registration with a segmented lung atlas. To improve
the results, a separate atlas is built for left and right lung using the following approach: First, the j images Ij of
a training data set are registered to one arbitrarily chosen reference image using an affine pre-alignment of the

lung surfaces followed by a non-linear diffeomorphic registration,16 yielding the transformation ϕ
(0)
j . Registration
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Figure 2. The mean intensity and shape atlas Ī(3) of the left and right lung and the corresponding lobe segmentations.

is done using lung masks, that means only the inside of the lung is matched. The images are then transformed

to the reference frame by Ij ◦ ϕ(0)
j and the mean image Ī(0) is computed.

To avoid a bias due to the choice of the reference frame, an iterative approach proposed by Guimond et al.17 is
pursued. For this, the mean transformation ϕ̄(0) is computed and its inverse used to transform the mean image.
Then, registration of all images is repeated with Ī(0) ◦ (ϕ̄(0))−1 as reference image. This approach is iterated
until the average transformation converges against the identity and the mean shape and intensity atlas Ī(n) is
obtained after n iterations. Finally, the lobe segmentations of the images Ij are also transferred to the coordinate
system of the atlas and then combined using the standard vote rule to represent a segmentation of the mean
shape and intensity image.
An initialization for the segmentation of an unseen test image can then be generated by registering that image
to the atlas and transferring the atlas segmentation to the image.

2.3 Image data and evaluation procedure

The presented approach for lobe segmentation was tested on a set of nine thoracic normal dose CT images Ij ,
j ∈ {1, . . . , 9} (120 kVp, 450-750 mAs, 0.79× 0.79× 0.7 mm spacing). For each image, manual fissure and lobe
segmentations were provided for training/atlas generation and evaluation.
For fissure segmentation, 1000 fissure- and background voxels each were sampled per training image. Moreover,
a leave-one-out strategy was applied, that means to segment image Ij features were sampled in each image Il
with j �= l, resulting in 16k samples in total.
It has to be noted that the atlas was not generated using a leave-one-our strategy but considering all nine images.
This was done mainly for computational reasons but since the atlas is only used for initialization and bearing
in mind the observations made in Ehrhardt et al.,18 we consider the resulting bias to be neglectable. Atlas and
corresponding lobe segmentation are illustrated in Figure 2.
The segmentation approach is implemented using sparse field level sets.19 Moreover, a multi-level strategy is
applied to improve both segmentation results and computational efficiency. The parameters were determined
empirically and used unaltered for all images: τ = 0.5, α = 1.0, β = 0.5. A total of 600 iterations were performed
on two resolution levels.
For evaluation, three segmentations S are compared with the manual reference segmentationM : the initialization
SInit as described in section 2.2, the standard level set segmentation SStd without the additional force term (eq.
(1)) and the proposed segmentation approach for lobe segmentation SLobe, eq. (3). Segmentation quality is
quantified separately for each lobe i using the Dice coefficient:

Dice(Mi, Si) := 2
|supp(Mi) ∩ supp(Si)|
|supp(Mi)|+ |supp(Si)| ,

where supp denotes the support of the segmentation.
Since the Dice coefficient is difficult to interpret due to the varying size of the lobes, an additional metric
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Metric Lobe/Fissure SInit SStd SLobe

Dice

left superior 0.94± 0.02 0.94± 0.02 0.98± 0.00
left inferior 0.94± 0.03 0.94± 0.02 0.98± 0.01
right superior 0.93± 0.02 0.94± 0.02 0.97± 0.02
right middle 0.78± 0.06 0.78± 0.06 0.83± 0.13
right inferior 0.92± 0.02 0.92± 0.02 0.93± 0.06

mean 0.90± 0.02 0.90± 0.02 0.94± 0.04

Fiss
left 0.25± 0.22 0.24± 0.21 0.83± 0.07
right oblique 0.25± 0.16 0.24± 0.16 0.76± 0.13
right horizontal 0.24± 0.12 0.23± 0.12 0.48± 0.24

Table 1. Quantitative evaluation results for the three segmentations, averaged
over all nine data sets: the initial segmentation SInit, the standard level set
segmentation SStd and the level set segmentation with additional lobe force
SLobe.

Figure 3. Illustration of how the metric
Fiss is calculated. Fiss is the propor-
tion of B(M) (green) that lies in B+(S)
(red).

is introduced similar to that proposed by Murphy et al.20 It aims at quantifying the proportion of the lobe
boundaries that are successfully traced in the segmentation result. Let B(S) be the set of voxels of segmentation
S that lie at the boundary between two lobes. To incorporate some tolerance, this region is expanded by ±3
voxels in z-direction and denoted by B+. The proportion of correctly segmented lobe boundaries can then be
quantified by

Fiss(M,S) :=
|{x : x ∈ B(M) ∧ x ∈ B+(S)}|

|{x : x ∈ B(M)}| .

This approach is illustrated in Figure 3.

3. RESULTS AND DISCUSSION

Exemplary results of the presented approach for lobe segmentation are shown in Figure 4. The atlas-based
initialization (second column) depicts the approximate anatomy of the lungs but lobe boundaries are often
remote from the actual fissures. Using the multi-object level set approach without additional force term (third
column), lung boundaries are segmented precisely but in the inside of the lung only the smoothing condition
applies. Adding the presented force term however causes an attraction of the lobe boundaries to the fissures (last
column). The strength of the approach becomes apparent in areas with gaps in the detected fissure segmentations:
Due to the formulation of the cost image as distance map, the level set automatically finds the shortest connection
between the fissure segments.
Quantitative results are given in Table 1. In all cases, lobe segmentations were considerably enhanced using the
presented fissure attraction force. The improvement is also statistically significant (p < 0.005) for all metrics
except the Dice coefficient of the right superior and middle lobe. It is also apparent that left lobes are segmented
considerably better (83% of the boundary is traced correctly) than the three right lobes (76% and 48%). This
can be explained by the risk that the level set is attracted by the wrong fissure if the initialization is considerably
apart. Moreover, detection of the right horizontal fissure is often inferior to the other two fissures.
It can be observed that segmentation quality mainly depends on two aspects of the algorithm: the calculation
of the cost image and the initialization. Fissure segmentation is sensitive to image quality and may therefore
be insufficient for images with low resolution or reconstruction artifacts. While gaps in the fissures can be
compensated by the level set formulation, it may impair the segmentation if a whole part of a fissure is missing.
This is demonstrated in Figure 5 (left), where the boundary is attracted by the oblique fissure because the
horizontal fissure is detected incompletely. The inverse problem is caused if structures are falsely classified as
fissure and therefore cause an attraction of the segmentation (Figure 5, right). These limitations are evident
especially in areas where the initialization is unsatisfying and apart from the fissures. Here, the segmentation
may be attracted either by the wrong fissure or by other structures or noise in the images falsely classified as
fissures.
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Figure 4. From left to right: a) the image I with the skeleton K of the fissure segmentation as red overlay; b) the atlas-
based initialization of the segmentation; c) the result of the standard level set segmentation; d) the result of the level set
segmentation with additional lobe force.
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Figure 5. Limitations of the presented approach: Incomplete fissure segmentations (left) or structures incorrectly classified
as fissures (right) can impair the segmentation result.

4. CONCLUSION

In this work, a novel approach for pulmonary lobe segmentation based on multi-region level sets is presented.
Fissure information is extracted from the image using a supervised enhancement filter. The information is
incorporated in the level set framework in form of a new force term.
It is shown that the presented method is capable of segmenting the pulmonary lobes. The approach performs
best for the left lung where on average a part of 83% of the interlobular fissure was precisely detected. In the right
lung, only 76% and 48% of oblique and horizontal fissure were traced correctly because they are close to each
other and the segmentation is in risk of being attracted by the wrong one. These results show that the method
depends on a reasonably good fissure detection and initialization, which may suffer from insufficient image quality.
In future work, this problem can be addressed by consideration of additional anatomical information like the
vasculature to distinguish between the lobes.
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