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Abstract. Dense segmentation of large medical image volumes using a
labelled training dataset requires strong classifiers. Ensembles of random
decision trees have been shown to achieve good segmentation accuracies
with very fast computation times. However, smaller anatomical struc-
tures such as muscles or organs with high shape variability present a
challenge to them, especially when relying on axis-parallel split func-
tions, which make finding joint relations among features difficult. Recent
work has shown that structural and contextual information can be well
captured using a large number of simple pairwise intensity comparisons
stored in binary vectors. In this work, we propose to overcome current
limitations of random forest classifiers by devising new decision trees,
which use the entire feature vector at each split node and may thus be
able to find representative patterns in high-dimensional feature spaces.
Our approach called vantage point forests is related to cluster trees that
have been successfully applied to space partitioning. It can be further
improved by discarding training samples with a large Hamming distance
compared to the test sample. Our method achieves state-of-the-art seg-
mentation accuracy of ≥90% Dice for liver and kidneys in abdominal CT,
with significant improvements over random forest, in under a minute.
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1 Introduction

Multi-label classification is important in a number of vision applications, such
as object recognition and medical image segmentation [1]. Clinical applications
of automatic multi-organ segmentation may require either highly accurate delin-
eations (e.g. for diagnostic tasks) or fast and robust segmentations of multiple
organs (e.g. for image guided interventions). Manual interaction is often not pos-
sible in time-sensitive scenarios. We are hence interested in supervised segmen-
tation, where a representative training set is available with dense manual label
annotations, which is used to classify voxels in an unseen image based on features
that are extracted within their spatial proximity (patches). Since time-efficient
classifiers are required for large volumes, random forests [1, 2], fern ensembles [3,
4] or atlas forests [5] have become popular for localising anatomical landmarks
or voxelwise multi-organ segmentation of medical scans. The quality of the seg-
mentation might be limited due to changes in contrast or strong noise within



2 M.P. Heinrich and M. Blendowski

the given scans and the availability of enough training samples (which may re-
duce the generalisability of certain classifiers). So far, the segmentation quality
of multi-atlas based registration combined with label fusion (MALF) often out-
performs voxelwise classification. These methods benefit from strong contextual
correlations (in human anatomy) by using constrained transformation models,
but the deformable image registration is usually very time-consuming.

The goal of this work is to improve segmentation quality (close to the level
of registration-based approaches) while retaining the low computation times of
ensemble classifiers. To deal with the above challenges we propose to use binary
vectors of contextual features together with a newly developed tree-based classi-
fier. To capture contextual information a 3D extension of BRIEF [6] (a popular
2D keypoint descriptor) is used, which is based on voxel comparisons within
a (pre-smoothed) patch. In contrast to the related long-range context features
introduced e.g. in [7] or SIFT vectors (used for medical segmentation in [8]),
only the sign of intensity differences is stored, which makes the feature vectors
robust against mononotic changes in intensities (in most medical scans orienta-
tional invariance is of lesser importance). Details of the exact sampling layout
of the features used in this work will be given in Sec. 2.1. Our hypothesis is
that the joint combination of hundreds of these BRIEF features can successfully
capture contextual anatomical information and variability, but only if they are
employed within a strong classifier.

Our approach for devising such a suitable classifier (that can deal with high-
dimensional binary vectors) is based on the adaption of the vantage point trees,
which was originally proposed for high-dimensional data clustering and acceler-
ated search in metric spaces [9], to supervised image classification. VP trees were
found to be superior for finding similar grey-value patches in a recent compar-
ison against ball trees, kd-trees and hierarchical k-means [10]. We will present
vantage point forests as new classifier for binary strings in Sec. 2.2. The ad-
vantage compared to random decision trees is that at each node the path of the
sample(s) is dependent on the full feature vector and not only a single (opti-
mised) feature dimension as in [7]. Therefore high-dimensional hyperspheres can
efficiently partition the (potentially sparsely populated) feature space. Oblique
decision trees [11, 12] also use multiple feature dimensions to create hyperplanes
for splitting, but their training procedure is much more time-consuming (akin
to ball trees cf. [10]) than our vantage point approach. We applied the proposed
fully-automatic segmentation algorithm to clinical CT scans of the abdomen
and demonstrate significantly improved accuracy compared to random decision
forests in Sec. 3.

2 Methods

We perform patch-based classification, where a label yi ∈ {0, 1, . . . , |C| − 1}
should be assigned out of a set of classes C to each test sample i. Each image
patch Pi ∈ R|L| (with |L| pixels) associated with i can be described by a feature
vector hi ∈ Hn, which resides (without loss of generality) in an n-dimensional
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Fig. 1: Contextual information (BRIEF) is captured by comparing mean values of two
offset locations Pi(q) and Pi(r). Structural content (LBP) can be obtained by fixing
one voxel to be the central Pi(0). When determining the training samples from c) that
are closest to the central voxel in a) using our vantage point forest the similarity map
overlaid to c) is obtained, which clearly outlines the corresponding psoas muscle.

Hamming space, where hid ∈ {±1} describes the d-th dimension of sample i. In a
supervised training stage a ground truth class label has been assigned to a large
number of feature vectors yielding |M | training samples (hj , yj), j ∈M . During
testing a probability distribution p(y|hi) is estimated for each test sample i and
the most likely label y∗i = argmaxy∈C p(y|hi) is chosen.

2.1 Contextual Binary Similarity

We employ a strong combination of numerous weak intensity comparison fea-
tures. In [4] contextual features, related to local binary patterns (LBP) [13] have
been used to localise organs. For each binary feature the mean intensity of a
region around the voxel of interest is compared to a region with a certain spatial
offset. However, by relying strongly on relations of the central region, helpful
pairwise interactions of two different neighbouring structures may be missed.
[6] showed that by using two different offsets for both regions (i.e. none is cen-
tred at the voxel of interest) keypoints recognition rates can be much improved
(using the binary BRIEF descriptor). For any given intensity patch Pi the fea-
ture values are simply obtained as hid = +1 if Pi(q) > Pi(r) for (q, r) ∈ L and
hid = −1 else. The patch may be smoothed prior to the pixel comparisons by a
Gaussian kernel with variance σ2

p.

In Fig. 1 the proposed combination of LBP- and BRIEF-like features is visu-
alised. Similar features based on the value of intensity differences have also been
used in [1] for anatomy localisation and segmentation. We use only the sign of
these differences, which improves robustness against contrast variations [4] and
reduces in this work the computational complexity of the similarity calculation
between two very long descriptors (by using popcount instructions).
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2.2 Vantage Point Forests

Different approaches could be employed to determine the class probability p(y|hi)
for an unseen test sample i. For random forest ensembles a number of uncorre-
lated decision trees is trained, in which each node determines whether a sample
should be directed to the left or right branch based on a selected feature dimen-
sion d and a threshold τ . Both feature dimension and threshold can be optimised
during training in order to divide samples of different classes (and thus decrease
the entropy of class histograms in the following levels).

Our proposed vantage point classifier, in contrast, first randomly selects a
sample j out of the data available at the current node and finds a distance
threshold τ so that approximately half the samples are closer to j than τ and
the other half is farther away. In our work the distance between samples is defined
by the Hamming weight of their entire feature vectors, so that all i for which
dH(i, j) = ||hi−hj ||H < τ will be assigned to the left node (and vice-versa). The
Hamming distance measures the number of differing bits in two binary strings
||hi − hj ||H = Ξ{hi ⊕ hj}, where ⊕ an exclusive OR and Ξ a bit count. The
partitioning is recursively repeated until a minimum leaf size is reached (we store
both the class distribution and the indices of the remaining training samples Sl

for each leaf node l).

During testing each sample (query) is inserted in a tree starting at the root
node. Its distance w.r.t. the training sample of the current vantage point is
calculated and compared with τ (determining the direction the search branches
off). When reaching a leaf node the class distribution is retrieved and averaged
across all trees within the forest1.

Algorithm 1: Training of Vantage Point Forest

Input: |M | labelled training samples (hj , yj), parameters: number of trees T ,
minimum leaf size Lmin

Output: T tree structures: indices of vantage points, thresholds τ for every
node, class distributions p(y|hi) and sample indices for leaf nodes.

1 foreach t ∈ T do
2 add initial subset S0 = M (whole training set→root) to top of stack
3 while stack is not empty do
4 retrieve Sn from stack, select vantage point j ∈ Sn (randomly)
5 if |Sn| > Lmin then

6 calculate dH(i, j) = ||hi −hj ||H∀i ∈ Sn, and median distance τ = d̃H
7 partition elements i of Sn in two disjunct subsets

Snl = {i|dH(i, j) < τ}, Snr = Sn \ Snl and add them to stack

8 else
9 store p(y|hi) and sample indices of Sl (leaf node)

1 Our source code is publicly available at http://mpheinrich.de/software.html
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When trees are not fully grown (leaving more than one sample in each leaf
node), we propose to gather all training samples from all trees that fall in the
same leaf node (at least once) and perform a linear search in Hamming space to
determine the k-nearest neighbours (this will be later denoted as VPF+kNN).
Even though intuitively this will add computationally cost, since more Hamming
distances have to be evaluated, this approach is faster in practice (for small Lmin)
compared to deeper trees due to cache efficiencies. It is also much more efficient
than performing an approximate global nearest neighbour search using locality
sensitive hashing or related approaches [14].

Split Optimisation: While vantage point forests can be built completely
unsupervised, we also investigate the influence of supervised split optimisation.
In this case the vantage points are not fully randomly chosen (as noted in Line
4 of Alg. 1), but a small random set is evaluated based on the respective infor-
mation gain (see [7] for details on this criterion) and the point that separates
classes best, setting τ again to the median distance for balanced trees, is chosen.

2.3 Spatial Regularisation using Multi-Label Random Walk

Even though the employed features provide good contextual information, the
classification output is not necessarily spatially consistent. It may therefore be
beneficial for a dense segmentation task to spatially regularise the obtained prob-
ability maps P y(x) (in practice the classification is performed on a coarser grid,
so probabilities are first linearly interpolated). We employ the multi-label ran-
dom walk [15] to obtain a smooth probability map P (x)yreg for every label y ∈ C
by minimising E(P (x)yreg):∑

x

1

2
(P (x)y − P (x)yreg)2 +

∑
x

λ

2
||∇P (x)yreg||2 (1)

where the regularisation weight is λ. The gradient of the probability map is
weighted by wj = exp(−(I(xi) − I(xj))

2/(2σ2
w)) based on differences of image

intensities I of xi and its neighbouring voxels xj ∈ Ni in order to preserve edges.
Alternatively, other optimisation techniques such as graph cuts or conditional
random fields (CRF) could be used, but we found that random walk provided
good results and low computation times.

3 Experiments

We performed automatic multi-organ segmentations for 20 abdominal contrast
enhanced CT scans from the VISCERAL Anatomy 3 training dataset (and addi-
tionally for the 10 ceCT test scans) [16]. The scans form a heterogenous dataset
with various topological changes between patients. We resample the volumes to
1.5 mm isotropic resolution. Manual segmentations are available for a number of
different anatomical structures and we focus on the ones which are most frequent
in the dataset, namely: liver, spleen, bladder, kidneys and psoas major muscles
(see example in Fig. 2 with median automatic segmentation quality).
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a) test image b) ground truth c) random forest d) VP forest (ours)

Fig. 2: Coronal view of CT segmentation: Psoas muscles �� and left kidney � are not
fully segmented using random forests. Vantage point forests better delineate the spleen
� and the interface between liver � and right kidney � (bladder is out of view).

Parameters: Classification is performed in a leave-one-out fashion. A rough
foreground mask (with approx. 30 mm margin to any organ) is obtained by
nonrigidly registering a mean intensity template to the unseen scan using [17].
We compare our new vantage point classifier to standard random forests (RDF)
with axis-aligned splits using the implementation of [18]. For each method 15
trees are trained and either fully grown or terminated at a fixed leaf size of
Lmin = 15 (VPF+kNN). Using more trees did not improve classification results
of RDF. The number k of nearest neighbours in VPF+kNN is set to 21.

A total of n = 640 intensity comparisons are used for all methods within
patches of sizes of 1013 voxels, after pre-smoothing the images with a Gaus-
sian kernel with σp = 3 voxels. Half the features are comparisons between the
voxel centred around i and a randomly displaced location (LBP), and for the
other half both locations are random (BRIEF). The displacement distribution
is normal with a standard deviation of 20 or 40 voxels (for 320 features each).
The descriptors are extracted for every fourth voxel (for testing) or sixth voxel
(in training) in each dimension (except outside the foreground mask) yielding
≈500’000 training and ≈60’000 test samples. Spatial regularisation (see Sec. 2.3)
is performed for all methods with optimal parameters of λ = 10 for RDF, λ = 20
for VPF and σw = 10 throughout (run time ≈ 20 sec.).

RDF have been applied with either binary or real-valued (float) features. We
experimented with split-node optimisation for VPF, but found (similar to [3] for
ferns) that it is not necessary unless when using very short feature strings (which
may indicate that features of same organs cluster together without supervision).

Results: We evaluated the automatic segmentation results A using the Dice
overlap D = 2|A ∩ E|/(|A| + |E|) (compared to an expert segmentation E).
Vantage point forests clearly outperform random forests and achieve accuracies
of >0.90 for liver and kidneys and ≈0.70 for the smaller structures. Random
forests benefit from using real-valued features but are on average 10 percentage
points inferior, revealing in particular problems with the thin psoas muscles. Our
average Dice score of 0.84 (see details in Fig. 3) is higher than results for MALF:
0.70 or SIFT keypoint transfer: 0.78 published by [8] on the same VISCERAL
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VPF+kNN binary+reg. 0.91 0.83 0.62 0.90 0.90 0.75 0.75 0.84
RDF float+reg 0.90 0.79 0.61 0.81 0.79 0.55 0.58 0.74

RDF binary+reg 0.88 0.75 0.51 0.74 0.76 0.47 0.49 0.68
Keypoint Transfer [8] 0.83 0.77 0.87 0.86 0.67 0.67 0.78

ANTs + local MALF [8] 0.83 0.71 0.74 0.71 0.63 0.62 0.70
VPF+kNN binary+reg. 0.93 0.87 0.77 0.91 0.92 0.82 0.80 0.88

Wang (shape model) [16]
 0.95 0.91 0.87 0.95 0.96 0.83 0.85 0.91
Kéchichian (MALF) [16]
 0.93 0.90 0.82 0.92 0.92 0.80 0.81 0.88
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Fig. 3: Distribution of Dice overlaps demonstrates that vantage point forests signifi-
cantly outperform random forests (p < 0.001) and improve over several algorithms
from the literature. Including the kNN search over samples within leaf nodes from all
trees is particularly valuable for the narrow psoas muscles. Our results are very stable
across all organs and not over-reliant on post-processing (see boxplots with grey lines).

training set. For the test set [16], we obtain a Dice of 0.88, which is on par
with the best MALF approach and only slightly inferior to the overall best
performing method that uses shape models and is orders of magnitudes slower.
Training times for vantage point trees are ≈15 sec. (over 6x faster than random
forests). Applying the model to a new scan takes ≈1.5 sec. for each approach.

4 Conclusion

We have presented a novel classifier, vantage point forest, that is particularly
well suited for multi-organ segmentation when using binary context features.
It is faster to train, less prone to over-fitting and significantly more accurate
than random forests (using axis-aligned splits). VP forests capture joint feature
relations by comparing the entire feature vector at each node, while being com-
putationally efficient (testing time of ≈1.5 sec.) due to the use of the Hamming
distance (which greatly benefits from hardware popcount instructions, but if
necessary real-valued features could also be employed in addition). We demon-
strate state-of-the-art performance for abdominal CT segmentation – compa-
rable to much more time-extensive multi-atlas registration (with label fusion).
We obtained especially good results for small and challenging structures. Our
method would also be directly applicable to other anatomies or modalities such
as MRI, where the contrast insensitivity of BRIEF features would be desirable.
The results of our algorithm could further be refined by adding subsequent stages
(cascaded classification) and be further validated on newer benchmarks e.g. [19].
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