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Abstract

Background: To analyse the relationship between structure and (dys-)function

of the brain after stroke, accurate and repeatable segmentation of the lesion area

in magnetic resonance (MR) images is required. Manual delineation, the current

gold standard, is time consuming and suffers from high intra- and inter-observer

differences.

New Method: A new approach is presented for the automatic and repro-

ducible segmentation of sub-acute ischemic stroke lesions in MR images in the

presence of other pathologies. The proposition is based on an Extra Tree for-

est framework for voxel-wise classification and mainly intensity derived image

features are employed.

Results: A thorough investigation of multi-spectral variants, which combine

the information from multiple MR sequences, finds the fluid attenuated inversion

recovery sequence to be both required and sufficient for a good segmentation

result. The accuracy can be further improved by adding features extracted

from the T1-weighted and the diffusion weighted sequences. The use of other

sequences is discouraged, as they impact negatively on the results.

Comparison with existing methods: Quantitative evaluation was carried out

on 37 clinical cases. With a Dice coefficient of 0.65, the method outperforms
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earlier published methods.

Conclusions: The approach proves especially suitable to differentiate be-

tween new stroke and other white matter lesions based on the FLAIR sequence

alone. This and the high overlap render it suitable for automatic screening of

large databases of MR scans, e.g. for a subsequent neuropsychological investiga-

tion. Finally, each feature’s importance is assessed in detail and the approach’s

statistical dependency on clinical and image characteristics is investigated.

Keywords: sub-acute ischemic stroke lesion, white matter lesion,

segmentation, extra tree forest, random forest, multi-spectral MRI

1. Introduction

Cerebrovascular disease is the second most common cause of death in the

world (Mathers et al., 2009) and even survivors often face grave physical and

mental disabilities. Ischemic stroke is most common either due to local throm-

bosis, hemodynamic factors or embolic causes.5

Diagnosis of stroke often involves the acquisition of brain magnetic reso-

nance (MR) scans to assess the stroke’s presence, location, extent, evolution

and other factors. An automated method to locate, segment and quantify the

lesion area could support the clinicians and render their findings more robust

and reproducible.10

Cognitive neuroscientists could equally benefit from automatic lesion seg-

mentation. One neurosciencentific approach is based on lesion to symptom

mapping, which is used to detect correlations between brain areas and cognitive

functions by means of negative samples (Krämer et al., 2013). The approach of-

ten requires manual segmentation of pathologies such as stroke lesions in many15

MR volumes, a tedious and time consuming task, which is subject to high inter-

and intra-observer variability (Fiez et al., 2000), diminishing the validity of any

gained insight as well as the reproducibility.

Furthermore, a general applicable stroke lesion segmentation method would

enable the fully automatic screening of large databases of routinely acquired20
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scans, possibly with an ensuing mapping of the lesion volume to functional

and/or anatomical brain areas, to, for example, identify suitable study candi-

dates.

Finally, automatic ischemic stroke lesion segmentation can help in quanti-

tative studies aiming to answer the questions ’how an ischemic stroke evolves’25

and to discover the involved processes (Rekik et al., 2012).

1.1. Evolution and appearance of ischemic stroke lesions

Ischemic stroke lesion appearance in MR scans is not stable, as the lesion

undergoes a number of phases. The hyper-acute phase commences with the

total or partial loss of blood supply, followed by the acute (from 6 hours) and30

the sub-acute (from 24 hours) phases until the chronic phase (from 2 weeks) is

reached (Gonzalez et al., 2006). During these phases a number of cell death

mechanisms take place, changing the molecular composition of the lesion tissue

and consequently its visibility in the MR sequences. Additionally, secondary

effects such as swelling affect the anatomical layout of the brain. Our focus lies35

on the sub-acute phase, during which most MR scans are acquired in clinical

context. During this phase, the lesions undergo changes and vary in appearance:

They appear slightly to strongly hyperintense in fluid attenuated inversion re-

covery (FLAIR) and T2-weighted (T2w), hypointense in T1-weighted (T1w) and

decreasingly hyperintense in diffusion weighted (DW) sequences. For a more de-40

tailed discussion of stroke evolution, appearance and the underlying processes,

see Gonzalez et al. (2006) and Rekik et al. (2012).

1.2. Challenges of automatic ischemic stroke lesion segmentation

The gradual changes of stroke lesion appearance renders ischemic stroke

lesion segmentation a challenging task. Furthermore, stroke lesions can appear45

in various sizes, shapes and in all areas of the brain, which makes it difficult to

employ prior-based statistical methods. A crude description of the segmentation

task would be ’to look for something unusual’ in the images, but the anatomical

brain layout differs between persons.
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A recent overview by Rekik et al. (2012) identifies a number of common50

biological- and imaging-dependent challenges that have to be overcome: Any

proposed method working with clinical routine scans has to be able to work

with low quality images of varying resolutions and slice thicknesses, which might

contain imaging artefacts (e.g. due to patient movement). Varying visibility

of stroke lesions in MR sequences has to be considered, for example fogging55

in DW sequences (sometimes occurring isointense appearance of the lesions in

DW scans around the second week) and the T2 shine through effect. Hence

a multi-spectral approach is potentially more powerful than a mono-spectral

approach, as it takes information from multiple MR sequences into account.

As the lesion swells and shrinks during its evolution, it distorts adjacent tissue60

and causes anatomical changes such as ventricle enhancement and midline shift.

Furthermore, stroke lesions can be topologically unconnected (termed multifocal

lesions or embolic shower).

1.3. State of the art of ischemic stroke lesion segmentation

Segmentation of non-chronic ischemic stroke lesions has been summarized65

and discussed in Rekik et al. (2012). Of the 25 articles reviewed, the major-

ity describe pixel-based (n=13) as opposed to image-based (n=9), atlas-guided

(n=1) and deformable model (n=2) methods. Few present fully automatic ap-

proaches and none uses supervised training of a classifier.

Segmenting chronic differs from segmenting non-chronic stroke lesions, but70

similar methods can be employed in both cases. In the following, pixel-based

methods for chronic stroke lesion segmentation are described. Agam et al. (2006)

apply a mixture-parametric probabilistic model to diffusion tensor (DT), T1w

and T2w images, but DT sequences are rarely acquired in routine stroke as-

sessment. Another approach is taken by Seghier et al. (2008), who propose to75

search for chronic lesion candidates among atypical voxels not corresponding

to the tissue type expected at the location, which can be realized with tissue

probability maps. They applied fuzzy clustering to T1w images, which are

not the most suitable to identify stroke lesions, and they experienced problems
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with leakages into the ventricles. A Bayesian multi-sequence hidden Markov80

model with individual weights for the sequences, accounting for differences in

their contributions, is proposed by Forbes et al. (2010). As they provide only

results obtained on a single case, it is impossible to judge the general feasibil-

ity of their approach. Wilke et al. (2011) propose a semi-automatic as well as

an automatic, partially atlas-based method employing 4 class fuzzy-clustering85

to segment chronic ischemic stroke lesions in T1w sequences. For this purpose,

they calculate four prior-maps (tissue abnormality, tissue composition, Jacobian

determinant and laterality map) on high quality image data and combine them

to segment the lesion. This approach requires a potentially lossy registration

between pathological and healthy brains and considerable user interaction to90

achieve good results.

A recent publication by Mitra et al. (2014) approached the problem of

chronic lesion segmentation with a combination of Bayesian-Markov random

fields and random decision forests (RDF) for voxel-wise classification in multi-

spectral MR volumes. The authors report results obtained over a large evalua-95

tion dataset (n = 36), but they include secondary and other white matter lesions

(WML) in their ground truth by thresholding their MR volumes, which removes

the most challenging aspect of ischemic stroke lesion segmentation, namely the

differentiation between stroke and other WMLs.

We previously approached the problem with support vector machines for100

voxel-wise classification (Maier et al., 2014), but these turned out difficult to

tune and too sensitive to the selection of the training data.

All of the above articles except Mitra et al. (2014) have evaluated their

approach on a small number of cases. Rekik et al. (2012) noted that a de-

tailed description of the image data is required to assess the performance of any105

stroke lesion segmentation method in detail, as factors such as image quality

and artefacts can have a strong impact on the segmentation quality. Even more

important is the description of other pathologies such as WMLs and enclosed

haemorrhages. These are common occurrences in stroke cases and pose a serious

challenge.110
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1.4. Novel approach to automatic lesion segmentation

In this paper, we propose a novel, fully automatic method to segment sub-

acute ischemic stroke lesions in MR scans based on Extra Tree (ET) forests. ET

forest are robust to noise and uncertain training data (Geurts et al., 2006), both

of which we are likely to face in our application. Features are extracted voxel-115

wise from the MRI sequences and the trained ET forest is used to classify the

voxels of a formerly unseen case into two classes: the non-stroke brain tissue and

the stroke lesion. By using a machine learning method, we attempt to capture

the complex, non-linear class borders in feature space that allow to separate

lesion from non-lesion voxels.120

Our method is developed to work on clinical data without special require-

ments on image quality, resolution or imaging artefacts. Furthermore, it is

evaluated using various evaluation measures on 37 well described real cases,

some of which contain other WMLs, older stroke lesions and/or haemorrhagic

transformation. Thus we follow the recommendations formulated by Rekik et al.125

(2012) and focus on an application in cognitive neuroscience trials.

We apply ET forests to stroke lesion segmentation and obtain good results

with easy to compute features. A thorough investigation of the proposed method

is provided, including an analysis of the features. Furthermore, we examine the

influence of different MR sequences on the results. Finally, a robust training set130

sampling strategy is presented and evaluated.

2. Materials

In the previous section, we have noted the importance of a detailed descrip-

tion of the cases used in the method’s training and validation. In this section

the employed data, its clinical and imaging characteristics and the ground truth135

are described.

2.1. Data

All 37 datasets have been used in two clinical studies (Machner et al., 2014,

2012; von der Gablentz, 2012) on spatial neglectcarried out at the Department
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of Neurology, University Medical Center Schleswig-Holstein (UKSH), Campus140

Lübeck, Germany. The focus of these studies was on a specific neuropsycholog-

ical intervention and the MR images were obtained as background information

and had been acquired during routine clinical care for these patients. A 3T

Achieva 3.0T TX scanner (Phillips, Amsterdam, Netherlands) was employed.

The studies were approved by the local ethics committee (#12-064) and all pa-145

tients gave informed written consent. Of the 37 patients, 17 were women. The

mean age was 65.5± 15 years (range 26 years to 84 years).

Available sequences are T1w, T2w, FLAIR and DW. Additionally, an appar-

ent diffusion coefficient (ADC) map was computed from the DW images. The

FLAIR sequence was recorded for all patients, but only for a subset of n = 15150

cases all of the five sequences had been acquired.

T1w Turbo Field Echo (TFE) sequences were acquired in axial direction

with the following parameters: TR = 8.55 ms, TE = 4 ms, flip-angle = 8◦ and

voxel spacing = 1 × 1 × 1 mm. T2w Turbo Spin Echo (TSE) sequences were

acquired in sagittal direction with the following parameters: TR = 3194 ms,155

TE = 100 ms, flip-angle = 90◦ and voxel spacing = 0.43×0.43×4.4 mm for most

cases. FLAIR sequences were acquired in sagittal direction with the following

parameters: TR = 11 000 ms, TE = 125 ms, TI = 2800 ms, flip-angle = 90◦

and voxel spacing = 0.43× 0.43× 5.5 mm or 0.9× 0.9× 5.5 mm for most cases.

DW sequences were acquired in sagittal direction with the following parameters:160

TR = 2365 ms, TE = 52 ms, flip-angle = 90◦ and voxel spacing = 0.9 × 0.9 ×

5.5 mm for most cases. For a detailed listing of the images’ resolutions, we refer

the supplementary materials.

2.2. Lesion characteristics

Lesion volume ranged from 1.76 to 344.17 ml with an average of 95.48 ±165

95.88 ml. The mean lesion age calculated from available clinical data was 8.41±

4.32 days (range 1 to 22 days) and thus qualifies the lesions as being sub-acute.

Besides the stroke, some of the patients also show other pathologies. Most

display either a small or medium load of WMLs and n = 18 cases showed
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haemorrhagic transformation of part of the stroke lesion area. A detailed listing170

can be found in the supplementary materials. Most lesions are middle cerebral

artery (MCA) strokes, but some occurred in other brain areas. Fig. 1 shows

the distribution of lesion voxels normalized to Montreal Neurological Institute

(MNI) space and flipped to the same hemisphere. It can be seen that the lesions

cover most of the anatomical structure of the brain.

Figure 1: Distribution of lesion voxels over all 37 cases in MNI space in axial slices. The

yellow/bright outline denotes the maximum extend. Note that all lesions have been flipped

to the same hemisphere for this image.

175

2.3. Image quality

Acquisition of MR images of actual stroke patients can be difficult, as pa-

tients are often irritated or nervous (Rekik et al., 2012). Many of the image

are therefore noisy, often with Gibbs and sometimes movement artefacts (see

Fig. 2). This reflects that our data had been acquired at a stroke unit in routine180

settings. See the supplementary materials for complete list of image quality

issues. All cases were used in the evaluation, regardless of the image artefacts.

2.4. Ground truth

We train our ET forest classifier with and evaluate our method against a

ground truth segmentation delineated by a medical expert on the Flair sequence.185

Where required and available, other MR sequences were used to resolve ambigu-

ities. The applied rules were to segment only the newest ischemic stroke lesion

and to include completely encircled haemorrhages.
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(a) Case 01/T2w: Movement artefacts in ev-

ery second slice

(b) Case 03/Flair: Gibbs artefact

Figure 2: Examples of imaging artefacts in the datasets.

3. Methods

We propose a novel, fully automatic method based on Extra Trees for the190

segmentation of ischemic stroke lesions in MR images.

As all classification based methods, it can be divided into a training and an

application phase. The training phase requires a number of expert-segmented

cases to train the forest. For this purposes, the training cases are pre-processed

(Sec. 3.1) and voxel-wise local image features are extracted (Sec. 3.3) resulting in195

a large number of training observations. From these, a training set is sampled

randomly (Sec. 3.4) to train a forest of Extra Trees (Sec. 3.2). During the

application phase a formerly unseen case is processed. First, it passes through

the same pre-processing pipeline as the training cases. Then the same features

are extracted and each voxel-wise sample passed to the trained ET forest for200

classification into either lesion or background. The such obtained preliminary

lesion mask is further post-processed (Sec. 3.5), resulting in the final lesion

segmentation. For a schematic overview of the complete processing pipeline see

Fig. 3.
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Figure 3: Schematic overview of the method’s processing pipeline.

3.1. Pre-processing205

A number of pre-processing steps were performed to prepare the training

cases as well as new cases before the classification. All methods presented here

are fully automatic and applied with a fixed set of parameters described in the

experiment section 4.

In the first step, we resampled all FLAIR sequences to a common voxel210

spacing of R = x × y × z mm. Then all remaining sequences were rigidly reg-

istered to their associated FLAIR image using the elastix image registration

toolbox (Shamonin et al., 2014; Klein et al., 2010) to account for movement

and other small errors. In the third step, the intracranial segmentation, we

applied the Brain Extraction Tool (BET) proposed by Smith (2002) from the215

FMRIB Software Library (FSL) (Jenkinson et al., 2012) to the FLAIR sequence

to extract the brain. In some cases the skull, eyes or neck are only partially

removed, the cases were nevertheless kept. The bias fields of all sequences were

corrected with the MR Intensity Bias Field Correction tool (Likar et al., 2001)

from the Computational Morphometry Toolkit (CMTK) to increase intensity220

homogeneity over the tissue types. Finally, an intensity standardization algo-

rithm based on the work of Nyúl et al. (2000) was applied to remove intensity

scale differences between scans of the same MR sequence.
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3.2. Extra Tree forests

Extra Tree forests are ensemble classifiers similar to RDFs which base on225

weaker classifiers.

Decision trees (Breiman et al., 1984) are a popular method and show a num-

ber of advantages over other classifiers: They are simple to understand and

interpret, require practically no data preparation (such as e.g. normalization),

use a white box model and are very fast, both in training and application. Fur-230

thermore, they are statistically robust (Breiman et al., 1984). On the downside,

decision trees do not generalize well, thus are prone to overfitting (Breiman

et al., 1984; Criminisi and Shotton, 2013) and show very high variance with

respect to their bias (Geurts et al., 2006).

To address these shortcoming, decision forests have been proposed (Ho, 1998;235

Breiman, 2001; Criminisi and Shotton, 2013). They belong to the class of ensem-

ble methods, which combine multiple weak classifiers, here classification trees,

to obtain better predictive performance. A large number T of trees is grown

from the same learning set S. Upon application, the new sample is pushed

through each tree t ∈ T and a majority vote decides on the final class member-240

ship. Alternatively, class membership probabilities can be obtained from the

forests.

Since decision trees are grown deterministically, a notion of randomness has

to be introduced, otherwise all trained trees would be equal. Breiman (1996)

proposed to train each tree with a bootstrap replica of the training set. Shortly245

afterwards, Ho (1998) proposed to search for the optimal split not over all,

but only K randomly selected features at each node. Finally, Breiman (2001)

combined both of these methods, terming the approach random decision forests.

For RDFs, two parameters are important: The number of trees T trained and

the number of features K considered at each node. These popular classifiers250

have been shown to be very robust against noisy data as well as overfitting and

Geurts et al. (2006) found them to strongly reduce the variance of the decision

trees while only slightly increasing the bias. A number of empirical studies

(see, among others, Criminisi and Shotton (2013)) found the decision forests to
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outperform their predecessors and many other classifiers. In Mitra et al. (2014),255

RDFs were the classifier of choice.

Extra Trees or extremely randomized trees were introduced by Geurts et al.

(2006) and add another layer of randomness to decision forests. The additional

randomization step is introduced at the node during the tree training: Instead

of searching for the optimal cut-point i.e. threshold τ , a random threshold value260

is selected for each feature. Subsequently, the search space is reduced, leading

to faster training. On the down side, the forest size/depth is increased due

to the introduction of sub-optimal cuts. From a theoretical point of view, the

introduction of this additional randomness allows for a non-intuitive approach to

the classification problem by increasing the chance to jump out of local minima265

at the cost of sub-optimal cuts. Geurts et al. (2006) have compared ET forests

with RDFs and other tree-based classifiers and shown them to perform largely

equal to or better than their competitors, including RDFs. Furthermore, they

have established that ET forests lead to a further decrease in overall variance.

ET forests are suitable classifiers for our problem, as they are very robust to270

noise and uncertain training data. Our ground truth can contain errors, noise

and image artefacts, which may lead to uncertainties.

3.3. Local image features

For each voxel a number of features are extracted. The information en-

coded in these features is the knowledge made available to the classifier during275

training and application. It is therefore important to select meaningful and

discriminative features.

We decided on a number of mainly intensity based features to put the focus

on the method and to show that a good segmentation can already be obtained

with simple features. The default parameters for each feature are given in Sec. 4.280

All features are extracted from all available MR sequences.

Intensity feature: Depending on the MR sequence and the lesion age, stroke

lesions often show up as hyper- or hypointensities. Therefore, we take the

intensity value of each voxel after the pre-processing as our first feature fint.
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Weighted local mean feature: Many sequences are corrupted by noise or285

other image artefacts. The intensity value of a single voxel alone can thus be

misleading and many false-positives and false-negatives are bound to occur.

Therefore, we chose the weighted mean intensity value over a small area around

each voxel, computed by a convolution with a Gaussian kernel of size σ mm for

our second feature flmg,σ.290

2D centre distance feature: There are some spatially locatable parts of the

brain, such as the eyes and the ventricle, where no ischemic stroke lesions can oc-

cur. To improve robustness and to provide spatial information without running

the risk of reducing generality, we select as third feature fcd,{axial,coronal,sagittal}

each voxels Euclidean distance to the presumed brain centre in each of the three295

2D views (axial, coronal and sagittal). Since the true brain centre is not known,

the centre of the image is used as rough approximation.

Local histogram feature: Ischemic stroke lesions are largely inhomogeneous

in appearance and incorporate a wide range of intensities that often overlap with

healthy tissue types. Assuming that the local distribution of intensity values300

differs between lesioned and healthy brain tissue, we model the intensity distri-

bution in a cubical area of r3 mm3 through a normalized histogram with b bins.

The histogram range is set to the whole image’s intensity range. The number

of bins should be selected large enough to be able to model a large number of

possible distributions while being small enough to not inflate the feature vector;305

and the neighbourhood patch size r3 has to be selected to fit smoothly inside

the smallest lesions. Thus, the feature is defined by two parameters as flh,b,r.

3.4. Sampling the training set

A careful selection of the training samples is a crucial step for all learning

based methods. Depending on the image resolution, around 1283 = 2, 097, 152310

samples can be extracted per training case. This abundance of training samples

lead us to sample only a subset of all available training samples into the training

set. We keep the inherent lesion to background ratio of each case intact to in-

troduce the prevalence of background voxels to the classification process (which
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differs from the widespread approach to use samples equally distributed over315

the classes). Hence, we employ stratified random sampling, which corresponds

to uniform random sampling while keeping the class ratio intact, to extract

a number of NS samples from each case. For the exact value chosen for this

parameter, please refer to the experiment section 4.

3.5. Post-processing320

The only post-processing step applied to the classification result is the closing

of holes and the removal of small binary objects which are unlikely to represent

ischemic stroke lesions but rather constitute false positives. These have been

noticed to appear in the skull and neck areas when the intracranial segmentation

failed partially. The size of the threshold ts has to be chosen carefully to avoid325

deleting true positives.

4. Experiments

In this section, the evaluation scheme, the parameter values and the experi-

ments are described in detail.

4.1. Evaluation scheme330

The evaluation of our method was performed using leave-one-out cross-

validation. The resulting segmentations were compared to the expert ground

truth (which has been resampled to the working resolution R beforehand).

We employed a number of evaluation measures to highlight different aspects

of our results: Dice’s coefficient (DC) rates the overlap between two volumes. A335

value of 1 denotes a perfect fit, while a value of 0 signifies no overlap. The DC

is known to be affected by the size of the rated volumes, where larger objects

receive higher DC values than smaller objects for a comparable segmentation

quality. Therefore, we furthermore computed the average symmetric surface

distance (ASSD, mm), which gives a measure of how well the volumes’ surfaces340

fit. Outliers, which are an important aspect of a segmentation’s quality, are nei-

ther reflected by DC nor the ASSD. We thus introduced the Hausdorff distance
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(HD, mm) as a measure of the maximum error. Finally, precision and recall

(both in range [0, 1]) are provided. The higher the precision compared to the

recall, the stronger the under-segmentation and vice-versa.345

4.2. Parameter configuration

Our proposed method allows for a number of settings and depends on some

parameters. Three different configurations were used during the experiments:

By default, a mono-spectral approach was chosen, that employs only the FLAIR

sequence and was evaluated over all 37 cases. All experiments involving more350

MR sequences (multi-spectral) used the same set of default parameters, but were

trained and evaluated over the subset of 15 cases, for which all five sequences are

available. For the third configuration, the method’s parameters and the utilised

sequences were tuned for maximum accuracy to assess the proposed methods

optimal performance.355

The parameters values, chosen heuristically and not tuned, were as fol-

lows: For resampling (see Sec.3.1), an isotropic spacing of R = 3 mm3 was

selected. A total of NS = 250, 000 samples were drawn over all training cases

(see Sec. 3.4) and the following features extracted for each sampled voxel: 1.

intensity value fint; 2− 4. weighted local mean with σ ∈ 3, 5, 7 mm flmg,{3,5,7};360

5 − 7. the distance in mm to the image centre in axial, coronal and saggital

views fcd,{axial,coronal,sagittal}; 8− 40. the local histogram (11 elements feature)

of an area of size 53, 103 and 153 mm around each voxel flh,11,{5,10,15}. That

makes to a total of 40 features. The once sampled training set was used in

all experiments to allow for a sound comparisons independent of any variance365

introduced by the random sampling.

For ET forest training, the training set was resampled using bootstrapping

to train a total of T = 200 trees. At each node, K = 6 (≈
√

40) features were

considered in the search for the best split, which was rated by its information

gain. The trees were grown until a depth of 100 (which, for all practical purposes,370

corresponds to an unlimited growth) or until each leaf contained only samples

of a single class, whichever occurred first. This implies that we grew our trees to
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their maximum extent, neglecting all available measures to counter overfitting.

The class probability maps produced by the forest were thresholded at t = 0.5.

After segmentation, the post-processing steps described in Sec. 3.5 were375

employed, including the removal of all binary structures of size <= 1.5 ml to

reduce false positives.

The configuration of tuned parameters is described in the respective section

4.8 of the experiments.

4.3. Segmentation results380

Employing the default mono-spectral configuration as laid out above, our

proposed ischemic lesion segmentation method led to the segmentation results

presented in Tab. 1. The boxplots for DC, HD and ASSD are shown in Fig. 4

DC[0,1] HD(mm) ASSD(mm) prec. recall

average 0.65 28.61 5.02 0.83 0.58

std 0.18 17.82 3.37 0.17 0.21

median 0.68 21.63 3.71 0.86 0.59

Table 1: Average results obtained using the default mono-spectral configuration. Note that

the failed cases 30 and 36 have been exempt from the computation.

and a detailed listing of the results for each case can be found in the supple-

mentary materials. [For online version insert Supplementary Table 1 here.] Our385

approach failed in two cases to segment the stroke lesion. These two cases 30

and 36 were excluded from calculation of the evaluation measures for all further

experiments (but remained in the training set).

As noted above, the evaluation was conducted in the resampled space R

of the FLAIR sequence, which involves the potentially lossy resampling of the390

ground truth. Reversing the process and resampling the resulting segmentation

to the original resolution of each case instead led to comparable results of DM =

0.61, HD = 29 mm, ASSD = 4.83 mm, prec. = 0.80 and recall = 0.54 on

average.
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Figure 4: Boxplots of the evaluation measures with median line in red and outlier points in

green. Cases 30 and 36 are exempt.

4.4. Multi-spectral results395

To assess the superiority of multi- over mono-spectral approaches for stroke

lesion segmentation in the sub-acute phase, we trained ET forest classifiers with

all possible sequence combination of FLAIR, DW, ADC, T1 & T2 and evaluated

them over the 15 cases of the second configuration. From each sequence the

complete range of features described in Sec. 4.2 was extracted. The results are400

shown in Fig 5.

4.5. Feature combinations

We employed four different types of cardinal features to train our classi-

fier, some of which might be redundant or irrelevant. Although forest ensemble

methods are not known to suffer from overfitting due to the presence of re-405

dundant and irrelevant features, it is useful to perform a feature analysis to

improve the model interpretability and possibly reduce the size of the feature

vector. Fig. 6 displays the DC results obtained with ET forests trained with all

possible combinations of our feature types using the first configuration.
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Figure 5: Average DC values obtained for all possible sequence combinations. The lower x-axis

denotes the combination of sequences used in the corresponding results, where FL=FLAIR,

DW=DW, AD=ADC, T1=T1w and T2=T2w, while the upper x-axis as well as the alternating

background colours denote the changes in the number of sequences used. With the default

settings we obtained a DC of ≈ 0.63, marked by the horizontal dotted line in the graph. The

shaded horizontal band in the upper end of the graph is a visual aid to highlight the group of

best combination, which all contain the FLAIR sequence.

4.6. Influence of the post-processing410

During post-processing, we eliminated small outliers under the assumption

that most ischemic stroke lesions are larger than 1.5 ml. Omitting this step, we

obtained the mean results presented in Tab. 2.

4.7. Training set sampling

Our trainings set was randomly sampled from all available training cases as415

described in Sec. 3.4, which might have introduced a variance. To investigate the

influence of this variance on the final segmentation quality and to examine the
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Figure 6: Average DC values obtained for all possible feature combinations. The lower

x-axis denotes the combination of feature types used in the corresponding results, where

IN=Intensity, LG=Weighted local mean, LH=Local histogram and CD=2D centre distance, while

the upper x-axis as well as the alternating background colours denote the changes in the num-

ber of features used. With the default settings we obtained a DC of ≈ 0.65, marked by the

horizontal dotted line in the graph.

robustness of the chosen sampling method, we repeated the process of sampling,

training and evaluation 10 times. The average results and standard deviations

obtained are DM = 0.65±0.002, HD = 28±0.9 mm, ASSD = 4.96±0.08 mm,420

prec. = 0.82± 0.004 and recall = 0.59± 0.001.

We chose to only use 250, 000 of the total 10, 899, 312 training samples. It is

possible, that a larger training set would lead to better results. Fig. 7 displays

the resulting mean DC scores obtained with ET forests trained on sampling sets

of different sizes.425
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Configuration DC[0,1] HD(mm) ASSD(mm)

post-processing: on 0.65 29 5.02

post-processing: off 0.65 39 5.18

Table 2: Mean results obtained with and without post-processing.
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Figure 7: Influence of the training set size on the segmentation quality. The vertical line

denotes the default value.

4.8. Parameter tuning

We also investigated the influence of the forest parameters on the segmenta-

tion quality (see supplementary materials). From these results and the findings

on suitable feature and sequence combinations made above, we derived a set of

ideal, tuned parameters. They differed from the default configuration used in430

the experiments in four aspects: (1) The forests were trained on the FLAIR,

DW and T1w sequence; (2) all features were considered at each node i.e. K

is set to the feature vector length; (3) gini rather than information gain was

used to evaluate the quality of a split; and (4) all ten million available training

samples were used. The results obtained with the tuned as well as with the435

default parameters on the 15 cases for which all MR sequences were available

are presented in Tab. 3.
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parameter set DC[0,1] HD(mm) ASSD(mm) prec. recall

default
mean 0.63 32 5.60 0.75 0.63

std 0.18 22 3.80 0.25 0.21

tuned
mean 0.70 25 3.99 0.78 0.69

std 0.13 13 1.90 0.20 0.16

Table 3: Comparison of the default and the tuned set of parameters.

5. Discussion

Exempting the two failed cases, we obtained an average DC of 0.65 ± 0.18

for our method, which compares favourably with previously published results:440

Wilke et al. (2011) reported a DC of 0.6 for their semi-automatic and 0.49 for

their automatic approach. Hevia-Montiel et al. (2007) reached 0.54± 0.18 and

Seghier et al. (2008) even 0.64 ± 0.10, although only on eight real cases. In a

recent publication Mitra et al. (2014) proposed a method with which they have

achieved an average DC of 0.60 ± 0.13 and ASSD of 3.06 ± 3.17 mm. These445

comparisons have to be treated with care, as they have not been obtained on

the same dataset, with the same amount of cases or even for lesions in the

same stage of development. Regrettably, no publicly available dataset exists to

compare ischemic stroke lesion segmentation methods.

A similar evaluation approach can be found in Mitra et al. (2014), who450

likewise employed a voxel-wise classification scheme with an ensemble of decision

trees and evaluated their approach on a dataset of similar size. However, where

Mitra et al. (2014) used a RDF with a preceding Bayesian-Markov random

field, we applied an ET forest. Also, where they aimed to segment chronic, we

concentrated on sub-acute lesions. Most importantly, whereas they included455

old lesions and other WMLs as well, we tried to segment the most recent stroke

lesion only. Furthermore, they obtained their WML ground truth by simple

thresholding of the images. This last item means that they did not address the

difficult problem of stroke lesion to WML similarity.

Despite facing the challenge of excluding WMLs, we obtained a higher DC460
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score when compared with Mitra et al. (2014) and the HD values show that

outliers occurred only in three cases (02, 25 & 34, see Fig.10). Our ASSD is

higher than theirs with a similar standard deviation. For some cases we reached

ASSD values as low as 1.55 mm, which lies in the area of sub-pixel accuracy.

The precision is mostly higher than the recall, revealing a tendency to under-465

segmentate the lesions, a behaviour which is not optimal for our envisioned

application, although it might be desirable for other cases.

5.1. Qualitative Evaluation of segmentation performance

In this section the results of a visual examination are presented to elaborate

the potential causes for the observed failures as well as successes.470

In two cases, our method failed to detect the stroke lesions present. For

patient 30, this can attributed to a very small lesion (1.8 ml) coupled with a

heavy WML load. For patient 36 the reason is less obvious, but it seems that

the intensity standardization failed for this case.

Eighteen of our cases were afflicted with hypointense haemorrhagic trans-475

formation of parts of the ischemic stroke lesion. As can be seen in Fig. 8, the

proposed method was largely able to cope with these difficult cases, although

Fig. 8(c) shows that large haemorrhages that are not completely surrounded by

infarcted tissue can be missed.

(a) Successfull case 04 (b) Successfull case 13 (c) Failed case 08

Figure 8: Examples of the methods performance in the presence of haemorrhages. The

blue/dark outline denotes the ground truth, the yellow/bright outline the segmentation result.
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Although WMLs appear similar to stroke in FLAIR sequences, our method

has been proven successful in excluding them as can be seen in Fig. 9. This dis-

(a) Partial leakage in case 25 (b) Successfull case 27 with

many stroke-simmilar WMLs

(c) Successfull case 31 with no

leakage in adjacent WMLs

Figure 9: Examples of the methods performance in the presence of lesion-similar WMLs. The

blue/dark outline denotes the ground truth, the yellow/bright outline the segmentation result.

480

tinguishes our method from others such as Mitra et al. (2014), who circumvented

the problem by including WMLs into their ground truth.

Failed differentiation between WMLs and stroke lesions would result in out-

liers. These occurred only in three cases (see Fig.10) and can primarily be

attributed to errors in the skull-stripping.485

Our method copes implicitly with the problem of multi-focal lesions (Rekik

et al., 2012), as no assumption about connectedness is made.

Some cases displayed an under-segmentation towards the skull as can be

seen in Fig. 11(a). This is not a side-effect of an inaccurate skull-stripping, as

the bone and background had been removed successfully at the affected loca-490

tion. Furthermore, the presented method shows a tendency to keep a distance

from the ventricles (see Fig. 11(b)). Both of these behaviours are likely to be

connected. Presumably, the strong bias towards features that average the in-

tensity values over a larger region coupled with the downsampling of the images

causes the classifier to keep such a security margin. On the downside, this495
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(a) Outlier in only partially

removed skull of case 02

(b) Outlier in only partially

removed skull of case 34

(c) Outlier in crebellum of

case 18

Figure 10: The three occurences of outliers observed. The blue/dark outline denotes the

ground truth, the yellow/bright outline the segmentation result.

causes under-segmentation in cases where the lesion reaches up to the skull or

ventricle. On the upside, it is exactly this tendency that enables our method to

successfully differentiate between stroke lesions and other WMLs.

We face cases with lesions at different stages of development. The results dis-

played in Fig.12 show that the proposed method successfully segmented young500

(i.e. only slightly hyperintense) as well as old (i.e. with hypointense patches of

cell decomposition) lesions.

5.2. Multi-spectral results

Different MR sequences potentially contain complementary information about

the stroke lesions, e.g. hyperintensities in the DW sequence can help to differ-505

entiate between acute stroke and other WMLs. Multi-spectral approaches have

been reported to be superior to mono-spectral methods (Agam et al., 2006;

Forbes et al., 2010; Mitra et al., 2014). To assess if this holds true for the

segmentation of sub-acute ischemic stroke lesions, we evaluated our method’s

performance using any possible combination of the five sequences available for510

our data (Fig. 5).

Of the mono-spectral approaches, the FLAIR image clearly outperformed

the other sequences. This is consistent with the observation that sub-acute
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(a) Margin kept to skull in

case 06, despite strong lesion

evidence

(b) Margin kept to ventricle

in case 18, despite strong le-

sion evidence

Figure 11: Examples of the method tendency to keep a margin to the skull and ventricles.

The blue/dark outline denotes the ground truth, the yellow/bright outline the segmentation

result.

stroke lesion areas are distinctly visible in the FLAIR sequence (Gonzalez et al.,

2006). Also the DW and T2w sequence provided information suitable for the515

segmentation task, albeit less. When combining the FLAIR image with another

sequence, the addition of T1w and DW led to the largest gain in score. Adding

the T2w on the other hand, did not lead to a greater DC as could have been

expected from its mono-spectral performance. This is not surprising, as the

FLAIR sequence can be considered a special case of T2w. Overall, the sequence520

combinations including the FLAIR image markedly surpassed all others in terms

of segmentation quality.

We can conclude that the FLAIR sequence is necessary and mostly sufficient

for a successful segmentation of lesions in the sub-acute state. Employing a

multi-spectral approach led to only small improvements. Thus, a best-effort525

approach can be used: Multiple classifiers are trained and always the one is

selected that provides the best estimated segmentation result for the sequences

available for a new case. Finally, it should be noted that the expert ground

truth had been drawn in the FLAIR image, which is likely to have introduced a

bias in favour of this sequence. Nevertheless, it is remarkable, that the FLAIR530
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(a) One day old and only

slightly hyperintense lesion of

case 25

(b) Old (22 days) lesion of

case 23 with hypointense signs

of cell decomposition

Figure 12: Segmentation results on youngest (a) and oldest (b) lesion. The blue/dark outline

denotes the ground truth, the yellow/bright outline the segmentation result.

sequence alone has proven sufficient to distinguish between stroke and other

WMLs, which share many similarities in intensity profile and appearance.

5.3. Feature importances

Using all possible combinations of our feature types, we obtained the results

presented in Fig. 6. From there we can derive the different features’ importances535

for the classification task and examine their interaction in detail.

With only a single feature type, the best results were obtained using the

local histogram. The weighted local mean performed reasonably well, while the

low DC obtained for the intensity feature shows that multi-thresholding, which

it approximates, is not a suitable approach for stroke lesion segmentation. Used540

alone, the 2D centre distance reacheed a DC near zero, but in conjunction with

the local histogram, it led to results better than the sum of their respective

single performances. Adding the weighted local mean or the intensity to the

local histogram did not lead to equally high results, which tells us that these

three features are correlated. Combining all available feature types led to the545

best results.

Summarizing we can say that using more features is unlikely to worsen the
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segmentation quality, as the ET forests can cope elegantly with redundant or

irrelevant features.

5.4. Optimal performance of the proposed method550

Using a tuned set of parameters, all employed quality measures could be

improved (see Tab. 3), the DC even statistically significant (paired student’s t-

test, p < 0.05). Even more important is the reduction of the standard deviation,

which signifies that especially the difficult cases were improved. The number

of outliers was reduced and the distribution of results condensed to a smaller555

range, especially at the lower end.

With this configuration, our method appears to outperform all previously

published approaches. A head to head comparison of our method with other

methods as well as a validation of this optimal configuration on a new set of

cases are important tasks for the future.560

5.5. Influence of clinical and imaging factors

Clinical parameters, such as the size or age of a stroke lesion, can have

a severe effect on the segmentation quality. Wilke et al. (2011), for example,

noted that their segmentation approach for chronic lesions performs significantly

better for larger lesions according to Kendall’s rank correlation. But they used565

the DC in the rank comparison, which is known to yield higher values for larger

volumes.

We employed Pearson’s r to assess the linear correlation between the lesion

size and the ASSD score under the assumption of a normal distribution of the

variables, leading to the results presented in Tab. 4 and the scatter plot in570

Fig. 13(a). Besides the correlation coefficient r, we also supply the 2-tailed p-

value p as a measure of the test’s significance at a 95% confidence level (i.e.

p < 0.05). No statistically significant correlation between the lesion size and

the methods performance measured by the ASSD has been found.

The current set of cases ranges from the earliest to the later sub-acute stages575

of stroke and hence shows a marked differences in MR-appearance. A correlation
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Figure 13: Scatter plots to assess correlations between clinical factors and our methods per-

formance.

ASSD HD DC

lesion size (ml) r = +0.31, p = 0.07 r = +0.01, p = 0.95

lesion age (days) r = +0.33, p = 0.05 r = +0.05, p = 0.79 r = −0.40,p = 0.02

FLAIR image quality ({0, 1, 2}) ρ = +0.55,p = 0.00 ρ = +0.45,p = 0.01 ρ = −0.40,p = 0.02

WML load ({0, 1, 2, 3}) ρ = −0.02, p = 0.90 ρ = −0.01, p = 0.97 ρ = −0.04, p = 0.81

Haemorrhage ({no, yes}) ρ = +0.06, p = 0.73 ρ = +0.02, p = 0.93 ρ = −0.01, p = 0.97

Table 4: Person’s r and Spearman’s ρ correlation coefficients as well as their respective two-

tailed p-values relating a number of clinical and imaging parameters to the method’s scores.

Results with a confidence level higher than 95% are highlighted.

between the lesion age and the methods performance would thus imply that our

approach is biased towards lesions of a specific age. Again the Pearson’s r test

was employed to look for linear correlations between the lesion age and ASSD

as well as the HD score. The obtained results displayed in Tab. 4 show no580

tendency of our method to perform better (ASSD) on lesions of a specific age or

to produce more outliers (HD). For the associated scatter plots, see Fig. 13(b).

Another important question is whether the image quality (rated at a scale of

1 = good to 3 = bad) has an impact on the method’s performance. We observed

such a correlation for all quality measures (see Tab. 4) at a high confidence585

level of 98%, suggesting that our proposed method is slightly dependent on the
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quality of the input images.

Some of our cases displayed no WMLs, whereas they were abundant in oth-

ers. We rated the WML load on a scale of 0 to 3 and searched for an influence

on the method’s performance (ASSD) and the presence of outliers (DM). The590

results obtained for a Spearman’s ρ test and the two-sided p-value of a hypoth-

esis test are displayed in Tab. 4. No relation could be observed, i.e. our method

seems to perform independent of the presence of WMLs. The same test has been

applied to investigate how the presence of haemorrhages influence the accuracy.

The values in Tab. 4 show our approach to also be robust against haemorrhages.595

5.6. Other influences

A number of other factors in the pre- as well as post-processing have a

potential influence on the resulting segmentation quality.

Our post-processing included the removal of small binary objects to reduce

outliers. Inspecting the results presented in Tab. 2, it becomes clear that the600

only observable influence of this measure is a lowering of the HD values i.e. it

fulfils it designated purpose of eliminating small outliers. Visual examination

revealed that in no case a real ischemic stroke lesion has been falsely removed.

Only a subset of all available samples was used for training, which might have

introduced variance. The results obtained by repeated sampling presented in605

Sec. 4.7 show that our sampling method is very robust: The standard deviations

for all evaluation methods ranged in the third decimal.

Increasing the amount of training samples would lead to only a marginal

gain in segmentation quality at a high cost of training time as Fig. 7 shows.

6. Conclusion610

In this work, we presented a new segmentation method for sub-acute ischemic

stroke lesion segmentation based on ET forests trained with simple image fea-

tures. Evaluation on a large and well-described dataset has shown the proposed

approach to perform well even on challenging cases and to compare favourably

with other propositions from literature.615
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The ET forests ability to generalize well from noisy training data and their

robustness against overfitting make them an adequate choice for the challenging

classification problem at hand. Very good performance could be reached with

only a few simple feature.

Of these, the local histogram has been established as highly discriminative620

and an investigation of the features’ importances illustrated the methods’s ro-

bustness against redundant information.

Among the MR sequences, FLAIR has been found to be required and largely

sufficient for a successful segmentation of sub-acute stroke lesions, although the

method benefits from an addition of the T1 and DW sequences.625

Furthermore, a simple sampling strategy was proposed, allowing for a con-

siderable reduction of the training set size without any loss in segmentation

accuracy.

Statistical analyses indicate that our method is largely independent of clini-

cal and anatomical stroke parameters. Only the image quality appears to exert630

some influence on the outcome.

The fully automatic nature of the method, its proficiency on routine images

of varying stroke appearance and its customisability to different MR sequence

input combinations renders it an ideal candidate for applications in neuroscien-

tific context as, for example, the screening of large databases.635

In two cases, our approach failed to detect the stroke lesion and in some

others the segmentation quality was poor. This can largely be attributed to a

low FLAIR image quality. Further improvements are necessary to reach inter-

observer quality.

In future, we would like to test more elaborated features to support the640

discrimination process and to employ a subsequent narrow-band segmentation

to counter the under-segmentation. Furthermore, an multicenter evaluation

with ground truth data prepared by different experts is planned.
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Maier O, Wilms M, Gablentz J, Krämer U, Handels H. Ischemic stroke le-

sion segmentation in Multi-Spectral MR images with support vector machine

classifiers. In: SPIE Medical Imaging 2014, Computer-Aided Diagnosis. San700

Diego; volume 9035; 2014. doi:10.1117/12.2043494.

Mathers CD, Boerma T, Ma Fat D. Global and regional causes of death. British

Medical Bulletin 2009;92(1):7–32. doi:10.1093/bmb/ldp028.

Mitra J, Bourgeat P, Fripp J, Ghose S, Rose S, Salvado O, Connelly A, Campbell

B, Palmer S, Sharma G, et al. Lesion segmentation from multimodal MRI705

using random forest following ischemic stroke. NeuroImage 2014;doi:10.1016/

j.neuroimage.2014.04.056.
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