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ABSTRACT

Optical coherence tomography (OCT) is a non-invasive imag-
ing modality that provides cross-sectional 3D images of bi-
ological tissue. Especially in ophthalmology, OCT is used
for the diagnosis of various eye diseases. Automatic retinal
layer segmentation algorithms, which are increasingly based
on deep learning techniques, can support diagnostics. How-
ever, topology properties, such as the order of retinal layers,
are often not considered. In our work, we present an auto-
matic segmentation approach based on shape regression using
convolutional neural networks (CNNs). Here, shapes are rep-
resented by signed distance maps (SDMs) that assign the
distance to the next object contour to each pixel. Thus, spa-
tial regularization is introduced and plausible segmentations
can be produced. Our method is evaluated on a public OCT
dataset and is compared with two classification-based ap-
proaches. The results show that our method has fewer outliers
with comparable segmentation performance and additionally
preserves topology, which saves further post-processing.

Index Terms— Image segmentation, regression, topol-
ogy, OCT, retina

1. INTRODUCTION

Since its introduction in the 1990s, optical coherence to-
mography (OCT) has become a standard imaging modality
for retinal diagnostics in ophthalmology. OCT enables the
non-invasive acquisition of image volumes of the retina in
micrometer-resolution. Due to the high level of detail in the
depictive representation by OCT, it is particularly suitable to
detect pathological structures within the retina, which can be
used as biomarkers e.g. the individual retinal layer thickness
or the volume of diseased fluid deposits (see Figure 1). The
presence of biomarkers and their change over time is associ-
ated with certain retinal diseases, such as age-related macular
degeneration (AMD) or diabetic macular edema (DME).

The procedure of measuring biomarkers in OCT image
data requires manual segmentation of the respective structures
in the OCT image. Manual segmentation of biomarkers in

Fig. 1: OCT scan of a patient’s retina with diabetic macular
edema (DME). The disease causes thickness changes of the
individual retinal layers (red annotations). In addition, fluid
deposits (white arrows) leads to further disorders.

OCT images is very time consuming and therefore not appro-
priate in clinical practice. In order to save time as well as
personnel resources, the development of automatic segmenta-
tion methods has been motivated. In recent years, algorithms
for the segmentation of retinal layers and fluid deposits within
the retina have been presented in several works. These algo-
rithms often use machine learning [1] and graph theoretical
models [2, 3]. Although graph theoretical models guarantee a
correct topology of the retinal layers, they are very complex
to create and have to be adapted for different disease types.

More recent algorithms are based on deep learning meth-
ods, convolutional neural networks (CNNs) in particular.
Based on their training data CNNs are able to automatically
learn representative features in order to built very complex
classification or regression models. A very popular CNN ar-
chitecture in medical image analysis is the U-Net [4]. In their
work Roy et al. [5] presented a U-Net variant and trained
it with a joint loss function in order to segment both retinal
layers and fluid deposits. He et al. [6] used a cascade of
two U-Nets to segment retinal layers. Here, the first network
segments the retina, whereas the second one corrects seg-
mentation errors. Due to the fact that both methods perform
a pixel-wise classification, topology, e.g. in form of shapes,
can not be considered.

Further works integrated shape and topology constraints
in their segmentation algorithms, respectively. Fang et al. [7]
segmented nine retinal layers in OCT image data from pa-
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tients with non-exudative AMD. They linked a CNN model
to a graph search method [2] in order to provide topology
constraints. Furthermore, He et al. [8] proposed an advanced
version of their previous approach [6]. Again, the first net-
work performs a pixel-wise classification. However, the sec-
ond network conducts a regression of the individual retinal
layer thicknesses, by which topologically correct retinal seg-
mentation can be guaranteed. Even tough topology properties
are considered, the employed network architectures are com-
plex and used in combination with additional mathematical
models [7], or require further computational effort [8].

In this work, we present a new approach for the segmen-
tation of retinal layers and fluid in OCT image data based on
a regression-based segmentation approach using CNNs. In-
stead of constructing complex network architectures or loss
functions, we regress shape representations of the retinal lay-
ers as well as fluid deposits. This ensures spatial regulariza-
tion creating plausible segmentations. Glocker et al. [9] in-
troduced a combination of pixel-wise classification and shape
regression using decision forests. The shape information was
implicitly represented by signed distance maps (SDMs). The
segmentation results showed increased consistency and ro-
bustness. SDMs assign the distance to the object contour to
each pixel and indicate whether the pixel is inside or outside
the object. Furthermore, SDMs can be easily generated from
the existing annotated labels. Furthermore, Heinrich et al.
[10] recently achieved significantly improved segmentation
results by performing a CNN-based regression of SDMs and
reached the first place in the CREMI challenge for synaptic
cleft segmentation. Due to the advantages described above,
we also employ SDMs for our regression task. For this pur-
pose, the approach in [10] is extended to a multi-class regres-
sion in order to segment seven retinal layers as well as fluid
deposits in OCT image data of DME patients.

2. MATERIALS AND METHODS

Shape-based regression: The main contribution of this work
is a shape-based regression of retinal layers and fluid deposits
in OCT image data of DME patients using CNNs. In con-
trast to classification-based segmentation with each pixel as-
signed to a predefined category, we deploy a regression-based
approach. To ensure spatial consistency we employ SDMs,
which can be easily computed from ground truth label data.
Furthermore, regression of SDMs ensures spatial regulariza-
tion and thus preserves topology. SDMs are defined as fol-
lows:

SDM(x) =

(
�miny2⌦B d(x,y), if x 2 ⌦F

miny2⌦F d(x,y), if x 2 ⌦B .
(1)

⌦F and ⌦B denote the set of pixels belonging to the fore-
ground (inside the segmentation mask) and background re-
spectively. d(x,y) represents the distance metric. In this

work, the Euclidean distance d(x,y) =
q

kx� yk2 is used.
As suggested in [10], we scale the SDM and apply a tanh
non-linearity: SSDM = tanh(�SDM). This takes areas
with large distances to object contours less into account and
thus simplifies the regression task. We empirically have de-
termined a value of 0.1 for �. In order to obtain the respective
segmentation labels, we compute the minimum for each pixel
over all SSDM channels. No further post-processing is uti-
lized.

Network architecture: In order to evaluate the influence
of shape-based regression independently of the network archi-
tecture, we use the widely used U-Net architecture [4]. Like
every fully convolutional network (FCN), the U-Net consists
of a contracting encoder and a expanding decoder part. The
encoder gradually reduces the spatial resolution using strided
max pooling, whereas the decoder recovers object details as
well as spatial resolution. The encoder detects spatial context
in different resolution levels, which is combined with the fea-
tures of the decoder via skip connections. This allows the de-
coder to recover relevant features lost by the encoder’s pool-
ing operations.

We have replaced the transposed convolutions with bilin-
ear upsampling operations in order to avoid checkerboard ar-
tifacts. In doing so the amount of trainable parameters can
be reduced. In addition, the upsampling operation is followed
by a 1⇥ 1 convolution to receive the same number of feature
channels compared to the transposed convolution. The num-
ber of feature channels at the highest scale level is set to 64
which results in a number of 1024 channels at the lowest level.
The network receives as a input an single-channel image and
outputs an image whose number of channels corresponds to
the number of classes.

3. EXPERIMENTS AND RESULTS

Dataset: The presented approach is evaluated on the publicly
available Duke OCT dataset [11]. The dataset consists of ten
OCT scans from different patients with DME. Two medical
experts manually annotated retinal layers and fluid deposits of
the 11 centered slices (B-scans) of each OCT image. This re-
sults in a total number of 110 B-scans per expert. The follow-
ing structures have been segmented: inner limiting membrane
(ILM ), nerve fiber layer to inner plexiform layer (NFL-IPL

), inner nuclear layer (INL ), outer plexiform layer (OPL
), outer nuclear layer to inner segment myeloid (ONL-ISM
), inner segment ellipsoid (ISE ), outer segment to reti-

nal pigment epithelium (OS-RPE ) and fluid ( ). Adding
the background results in nine different classes. The image
volumes were acquired by a Spectralis OCT scanner (Heidel-
berg Engineering GmbH) where each B-scan has a size of
512 ⇥ 740 pixels. Further details regarding this data set are
reported in [11].

Due to the large OCT B-scan size, we have halved the
image size and have performed a zero padding, which results



Anatomic labels ! ILM NFL-IPL INL OPL ONL-ISM ISE OS-RPE Fluid Average
Metrics # Methods # E1 E2 E1 E2 E1 E2 E1 E2 E1 E2 E1 E2 E1 E2 E1 E2 E1 E2

DC

U-Net-L1 0.81 0.79 0.85 0.84 0.72 0.72 0.71 0.66 0.87 0.85 0.84 0.82 0.83 0.81 0.46 0.40 0.76 0.74
U-Net-DC 0.84 0.80 0.88 0.85 0.74 0.76 0.73 0.70 0.88 0.85 0.84 0.83 0.84 0.82 0.39 0.36 0.77 0.75
U-Net-CE 0.84 0.82 0.88 0.86 0.77 0.75 0.74 0.68 0.88 0.87 0.85 0.83 0.84 0.81 0.42 0.45 0.78 0.76

IRR 0.85 0.89 0.77 0.72 0.87 0.85 0.84 0.49 0.79

ASSD

U-Net-L1 1.03 1.83 1.25 1.27 1.21 1.51 1.24 1.62 1.41 1.71 0.60 0.68 0.59 0.68 – – 1.04 1.33
U-Net-DC 0.81 1.69 1.06 1.13 3.17 1.16 1.86 1.95 1.34 1.54 0.62 0.66 0.62 0.70 – – 1.35 1.26
U-Net-CE 0.83 1.35 0.99 1.42 1.12 1.59 1.34 1.42 1.26 1.42 0.61 0.66 0.59 0.69 – – 0.96 1.22

IRR 1.70 1.76 1.91 1.87 2.17 1.17 1.19 – 1.68

HD

U-Net-L1 9.56 11.74 7.45 6.77 8.50 9.62 9.59 11.26 10.78 12.10 2.79 2.87 2.59 2.87 – – 7.36 8.16
U-Net-DC 9.87 16.87 8.39 9.53 16.53 8.69 12.63 10.31 11.35 11.84 5.76 4.86 6.03 4.92 – – 10.08 9.57
U-Net-CE 7.11 11.46 8.86 7.99 9.04 9.67 10.32 11.03 9.84 11.69 4.16 3.61 3.30 3.49 – – 7.52 8.42

IRR 13.60 9.33 11.78 11.18 14.78 4.48 4.38 – 9.93

Table 1: Averaged metric results of the leave-one-out cross validations. Best performance is shown in bold. Values in columns
E1 and E2 represents metric results that have been computed using the annotated ground truth of first and second expert,
respectively. In addition, the inter-rater reliability (IRR) between both experts has been determined.

(a) Ground truth annotation by expert 1 (b) U-Net-L1 predictions (proposed)

(c) U-Net-CE predictions (d) U-Net-DC predictions

Fig. 2: Test OCT B-scan overlayed with ground truth annotations (expert 1) (a), with predictions of U-Net-L1 (b) and with
predictions of U-Net-CE (c) and U-Net-DC (d), respectively. Color mapping is explained as follows: ILM , NFL-IPL , INL

, OPL , ONL-ISM , ISE , OS-RPE and fluid . Topology errors are indicated by white arrows. The same B-scan as in
Figure 1 is shown.

in a resolution of 256⇥ 288 pixels for each B-scan.
Training: Adam optimization is used to minimize a L1

loss with respect to the SSDMs of the binarized labels. The
initial learning rate is set to 0.001. In addition, an exponen-
tial scheduler is utilized to adjust the learning rate during the
training where a decay of � = 0.99 is used. Furthermore, we
apply �1 = 0.9 and �2 = 0.999 as exponential decay rates
for the moment estimates. Moreover, a mini-batch size of five
B-scans is used to optimize the throughput of the GPU.

Because of the small number of training samples, we carry
out an online data augmentation. In addition to simple hori-
zontal flips and rotations (±10�), we also apply elastic trans-
formations to make the network less susceptible to atypical
morphologies e.g. in regions with fluid deposits.

The network model is trained for 200 epochs. After each

epoch we compute the average symmetric surface distance
(ASSD) between the contours of the predicted SSDMs and
the ground truth labels. The model that has achieved the low-
est ASSD for all class labels on the validation set at a partic-
ular epoch is used for testing.

Evaluation: We test our regression-based segmentation
(U-Net-L1) against two classification-based approaches us-
ing cross entropy (U-Net-CE) and dice coefficient (U-Net-
DC) as loss function, respectively. A Leave-one-out cross-
validation (LOOCV) is employed to evaluate our approach.
For this purpose, a network is trained per patient whose B-
scans are used as a test set (one subject, 11 B-scans) in each
case. The remaining patient datasets are divided into train-
ing (seven subjects, 77 B-scans) and validation sets (two sub-
jects, 22 B-scans). Since two experts each annotated all OCT



B-scans, the LOOCV was performed for both ground truth
datasets.

In order to measure the segmentation accuracy we use
three different metrics: Dice coefficient (DC), average sym-
metric surface distance (ASSD) and Hausdorff distance (HD).
The latter is used to detect outliers. The evaluation results
are shown in Table 1. Concerning DC and ASSD, our pro-
posed method achieves a slightly lower performance in com-
parison to U-Net-CE and U-Net-DC. Looking at the HD val-
ues, one can see that U-Net-L1 has on average the smallest
distances. Furthermore, it should be emphasized that U-Net-
L1 segments fluid deposits with comparable accuracy to U-
Net-CE/DC (c.f. Table 1). An example segmentation of the
different methods is shown in Figure 2. One can see that U-
Net-CE/DC (Figures 2c and 2d) shows segmentation errors
with regard to the topology. Corresponding areas are marked
with arrows (c.f. 2c/2d). In contrast, our proposed method
U-Net-L1 (Figure 2b) shows no topology errors. To further
demonstrate the topology preservation of our method, we ap-
plied a connected component filter to each retinal layer class.
The filter should output only a single component for each reti-
nal layer class unless it is separated by fluid. The percent-
age deviation of the computed components with respect to
the ground truth has been determined. Here, our method has
achieved on average a lower deviation (0.26) from the ground
truth than U-Net-CE/DC (0.29/0.33). Although U-Net-L1
preserves topology, however individual retinal layers appear
slightly smoothed, which explains the higher ASSDs.

4. CONCLUSION

In this work, we have presented a new approach for the seg-
mentation of retinal layers and fluid deposits in OCT image
data. We have shown that regression of SSDMs leads to ro-
bust segmentation results and topology preservation at the
same time.

Compared to other works [7, 8] our method does not re-
quire additional mathematical models or refinement steps to
produce topologically correct segmentations. In addition, it
can be shown that our approach also segmented fluid deposits
with a comparable accuracy with respect to other methods (U-
Net-CE/DC). Despite the slightly lower performance regard-
ing DC values and ASSDs we have shown that our proposed
method produces robust and topologically correct segmenta-
tions, c.f. HD, which are clinically more important than local
pixel-wise accuracy. In future work we are interested to im-
prove the performance of our method with respect to DC and
ASSD, e.g. by the extension of the loss function.
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