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Abstract

Modeling of respiratory motion gains in importance within the field of radiation therapy of lung cancer patients.

Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the

individual patient’s anatomy at different breathing phases. We propose an approach to generate a mean motion

model of the lung based on thoracic 4D CT data of different patients to extend motion modeling capabilities. Our

modeling process consists of two main parts: an intra–subject registration to generate subject–specific motion

models and an inter–subject registration to combine these subject–specific motion models into a mean motion

model. Further, we present methods to adapt the mean motion model to a patient-specific lung geometry.

A first evaluation of the model was done by using the generated mean motion model to predict lung and tumor

motion of individual patients and comparing the prediction quality to non–linear registration. Our results show

that the average difference in prediction quality (measured by overlap coefficients) between non–linear registration

and model–based prediction is approx. 10%. However, the patient–specific registration relies on individual 4D

image data, whereas the model–based prediction was obtained without knowledge of the individual breathing

dynamics. Results show that the model predicts motion patterns of individual patients generally well and we

conclude from our results that such a model has the capability to provide valuable a-priori knowledge in many

fields of applications.

Categories and Subject Descriptors (according to ACM CCS): G.3 [Probability and Statistics]: Time series analysis

1. Introduction

Respiratory motion is a major problem in radiation therapy
(RT) of lung cancer patients. To achieve high local tumor
control and low normal tissue complication probabilities the
dose to be applied should be focused on tumor tissue while
avoiding organs at risk. This becomes challenging especially
in case of lung tumors due to breathing induced tumor mo-
tion (motion amplitudes up to several cm [PFLea04]). The
increase of safety margins in turn increases the dose to lung
tissue and consequently the probability of treatment related
complication. The clinical use of methods to explicitly ac-
count for respiratory motion such as gated RT or tumor
tracking [KLMM00, NSSJ03] is still controversial; various
authors emphasize that further detailed analysis and quan-
tification of breathing dynamics are needed [LKO07].

A main issue within this field of research is the process of
lung motion modeling. These motion models are necessary
for example to define accurate treatment margins, to calcu-

late dose distribution and to develop prediction models for
gated or robotic radiotherapy. In previous literature there ex-
ists a variety of modeling approaches, ranging from using
simple analytic functions to describe the motion [LLBH99]
to biophysical models of the lung [ZOMP04, WESH08].
However, since the introduction of 4D (=3D+t) imaging such
as 4D CT or 4D MR lung motion modeling is usually done
by registration of 3D image data of the same patient acquired
at different breathing phases in order to estimate motion
fields between these phases. As a multitude of registration
approaches exists, multiple methods are applied to this appli-
cation [KNK∗04, SSA05, SBMG06]. In our previous work,
intensity–based registration techniques are used to generate
lung motion models [EWF∗07, HWS∗07, WEF∗07]. But re-
sulting motion models are based on individual 4D image
data and their use is normally confined to motion analysis
for this individual patient.

To achieve further insights into the variability of breath-
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ing motion between individuals a statistical analysis is nec-
essary. As a first step in this direction, this paper extends
our previous work in order to generate a mean motion model
of the lung from a set of 4D images of different individuals.
Different clinical applications of such a statistical 4D motion
model are possible. First, this model could be helpful from
the perspective of image-guided diagnosis, e.g. by compari-
son of motion patterns of individual patients with a "normal"
mean motion model. Furthermore, a priori knowledge about
the mean breathing motion can be used to reduce motion–
related artifacts during image acquistion [EWS∗07] or as an
additional constraint for image registration in order to im-
prove the robustness of motion estimation algorithms. More-
over, the model could complement techniques like gated RT
or tumor-tracking by improving tumor position prediction
during the process of irradiation using model-intrinsic infor-
mation. However, in this paper the modeling aspect is in the
focus.

Motion atlases were constructed before for myocardial
motion [CRSO∗03]. At least to our knowledge no similar
model approaches for the lung are published yet. Some ap-
proaches exist to generate 3D lung atlases [LCH∗03], but
these approaches cannot be easily extended to create a mean
4D lung model. Within this paper we therefore present a first
feasibility study. The modeling approach is based on the as-
sumption, that breathing dynamics work similarly for all pa-
tients examined. In principle this is given by the physiology
of breathing which is the same for all humans.

Section 2 describes the fundamentals of our modeling ap-
proach and in section 3 we show a first evaluation of mod-
eling accuracy. For evaluation purposes the mean lung mo-
tion model is applied to predict lung and tumor motion for
individual patients and compared to a registration–based ap-
proach.

2. Method

The goal of our approach is to generate an average model of
the respiratory motion based on a set of NP 4D-CT image
sequences. Each 4D image sequence is assumed to consist
of Nj 3D image volumes IP, j , which are acquired at corre-
sponding states j of the breathing cycle, e.g. maximum exha-
lation, mid inhalation, maximum inhalation, mid exhalation
and so on. Furthermore, we assume a given segmentation of
the lung for each of those images. Such a segmentation can
be achieved e.g. by using thresholding techniques and mor-
phological operations.

Our method consists of three main steps: First, we gen-
erate for each 4D image sequence a subject–specific motion
model by registering non–linearly the 3D image frames IP, j

to a reference frame. In a second step, all subject–specific
motion models were matched to generate an average inter–
subject model of the respiratory motion. And in a last step,
methods will be provided to adapt this average motion model

to a patient–specific geometry in order to generate a predic-
tion of the subject–specific respiratory motion.

2.1. Intra–patient motion estimation

The estimation of intra–patient respiratory motion requires
the alignment of 3D volumes of different respiratory states
of the same patient. In our application, we use a non–
linear intensity–based registration method in order to esti-
mate dense deformation fields of the lung. Let IP, j : Ω → IR

(Ω ⊂ IR3) be the 3D volume of subject P ∈ {1, . . . ,NP}
acquired at respiratory state j ∈ {1, . . . ,Nj}. A reference
breathing state ι̂ (e.g. max. exhale) is chosen and ÎP = IPι̂

is the reference image of patient P. The problem of im-
age registration can be phrased as finding a transformation
ϕϕϕP j : Ω → Ω that minimizes a distance D between the trans-

formed target image IP, j and reference image ÎP with respect
to a desired smoothness S of the transformation [Mod03]:

E [ϕϕϕP j] = D[ÎP, IP, j ◦ϕϕϕP j] + S[ϕϕϕP j] → min .

We are only interested in displacements of voxels inside
the lung. Therefore, lung segmentation masks SP, j : Ω →
[0,1] are used to restrict the registration to the lung region.
In addition to speed up the registration process this approach
allows us to refrain from explicitly handling the discontinu-
ities in the respiratory motion between pleura and rib cage.

A histogram matching is performed to compensate inten-
sity differences due to the altering air ratio in lung tissue
at different breathing states. After performing the histogram
matching the sum of squared differences is an applicable dis-
tance measure:

D[ÎP, IP, j ◦ϕϕϕP j] = (1)
Z

Ω
(SP, j ◦ϕϕϕP j)(xxx)

(

ÎP(xxx)− (IP, j ◦ϕϕϕP j)(xxx)
)2

dxxx.

The necessary regularization is done by using a diffusive
smoothing approach. The segmentation masks can further be
used to relax smoothing conditions outside the lung, which
leads to an anisotropic diffusion and a faster convergence of
the registration:

S[ϕϕϕP j] =
Z

Ω
α(S̃P, j ◦ϕϕϕP j)(xxx)‖∇(uuuP j)‖

2
dxxx, (2)

where S̃ is a dilated and smoothed version of S used to
avoid discontinuities in the diffusivity map. uuu : Ω → IR3 is
the displacement field of the transformation ϕϕϕP j , i.e. ϕϕϕP j =
Id + uuuP j. The diffusive regularization has the advantage of
an efficient computation [Mod03] while differences between
elastic and diffusive approaches are shown to be small in a
similar application [SBMG06].

Diffusive regularization cannot ensure the invertibility of
the transformation ϕϕϕ. As we need the inverse transformation
to predict tumor mobility, we have to ensure the invertibil-
ity. Therefore, we adapt a diffeomorphic registration method
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Figure 1: Examples of computed intra–subject displacement fields. The magnitude of the estimated lung motion between end

expiration and end inspiration is visualized color coded. The lung geometry and motion amplitude differ between patients.

motion patterns appear to be similar.

proposed in [VPPA07] to our diffusive registration scheme.
To speed up the registration and to improve robustness a
multi–resolution scheme is employed.

2.2. Inter–patient modelling of lung motion

In section 2.1 intra–subject models of the lung motion were
computed. Now, we want to generate an inter–subject model
of respiratory motion that reflects the mean motion of all
subjects. Algorithm 2 provides an overview of the model
generation process.

In a first step, correspondence between different subjects
has to be established. Therefore, all reference images ÎP (P =
1, . . . ,NP) are registered to an average intensity image of the
lung. To construct the average model a method proposed in
[GMT00] was used:

Algorithm 1 Generation of an average intensity atlas

Require: Set of 3D images ÎP (P = 1, . . . ,NP)
Result: Average intensity and shape image M

Choose an initial reference image R = ÎP0

for all subjects P do

Compute an affine transformation AAAP and a non-linear
transformation ϕϕϕP to register ÎP and R

end for

Compute an average intensity image R̄ from the registered
images ÎP

Compute an average deformation field ϕ̄ϕϕ from the non-
linear transformations ϕϕϕP

Generate an average intensity and shape image M by ap-
plying the inverse average deformation to R̄: M = R̄◦ ϕ̄ϕϕ−1

Algorithm 1 may be repeated by setting the initial refer-
ence image to the result of the last execution R = M, thus
constructing an average intensity and shape model close to

the centroid of the image set [GMT00]. The inter–subject
matching is restricted to the lung region and the algorithm
developed in section 2.1 is used for the non–linear registra-
tion. Following the suggestion in [GMT00], we need k ·NP

registrations with k = 3. In contrast, other least biased at-
las construction methods [PBHM05, JDJG04] need NP

2(NP−1)

or k ·NP with k >> 100 registrations, which would not be
feasible for our application.

Let AAAPM and ϕϕϕPM be the affine and non–linear trans-
formations between ÎP and M. Since the intra–subject mo-
tion models ϕϕϕP j are defined in the anatomical spaces of ÎP,
we can apply AAAPM and ϕϕϕPM to transfer the intra–subject
deformations into the coordinate space of M. The non–
translational components of AAAPM are applied to the displace-
ment vectors of ϕϕϕP j to eliminate subject–specific size and
orientation information.

In this manner, for each breathing state j the intra–patient
motion models ϕϕϕP j , P = 1, . . . ,NP are mapped to the coordi-
nate space of M and a mean motion model ϕϕϕM j is generated
by averaging the displacements. The steps to generate the
mean motion model are summarized in algorithm 2.

A weakness of the current implementation is that the av-
eraging as well as the affine transformation of displacement
components is performed in the Euclidean space. Although
all ϕϕϕP j are diffeomorphic transformations, ϕϕϕM j is not guar-
anteed to be diffeomorphic. The same argument holds for av-
eraging the deformation fields in the atlas generation method
(algorithm 1).

2.3. Prediction of lung motion using an average motion

model

The outcome of the last section is an average lung image M

for a reference state of the breathing cycle, e.g. maximum
exhalation, and a set of motion models ϕϕϕM j describing an
average motion between the respiratory state j and the refer-
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(a) (b)

Figure 2: Visualization of average lung model (a) and magnitude of mean deformation (b). In (a) the accurate registration of

the lung boundary and a good registration of structures inside the lung can be observed, while structures outside the lung are

not matched well. The average deformation model shows an intuitive respiratory motion pattern.

ence state. These models can be used to predict the patient–
specific breathing motion or to compare individual motion
patterns to the average motion.

For the transfer of the average model into the individual
coordinate space of subject Q we require a 3D CT image IQ

acquired at the selected reference state of the breathing cy-
cle. In order to map the mean motion models ϕϕϕM j to IQ we
apply an affine and non–linear registration step to compute
the transformation TMQ which aligns M with IQ. The appli-

cation IQ ◦
(

TMQ[ϕϕϕM j]
)

−1
can now be used to deform IQ

towards breathing state j. Here, TMQ[ϕϕϕM j] describes the ap-
plication of the affine and non–linear transformations to the
location and displacement components of ϕϕϕM j as described
in section 2.2. The inverse is computed using a Newton-
Raphson method.

Breathing motion of different individuals differ signifi-
cantly in amplitude. Therefore, motion prediction using the
mean amplitude will produce unsatisfactory results. To ac-
count for subject–specific motion amplitudes, we propose to
introduce additional information by providing the required
change in lung air content ∆Vair. Even without 4D-CT data,
this information can be easily acquired by spirometry mea-
surements. The ratio between the measured tidal volume
and the air content change can be assumed to be near 1.0
[LPN∗05]. Thus, we search the scaling factor λ so that the air

content of IQ ◦λ
(

TMQ[ϕϕϕM j]
)

−1
is near to Vair

(

IQ

)

+∆Vair.

The air content is calculated using the method described
in [LPN∗05] and a binary search strategy is applied to de-
termine λ which is restricted to have values in [0.5,2]. In fig.
3 the predicted displacement field using the mean motion
model and the displacement field computed by non–linear
registration is shown for one patient in order to compare both
approaches.

Algorithm 2 Generation of a mean motion model

Require: Set of 4D image data IP, j : Ω → IR (Ω ⊂ IR3), P =
1, . . . ,NP and j = 1, . . . ,Nj

Result: Mean motion model, consisting of average intensity
and shape image M for breathing state ι̂ and mean motion
fields ϕϕϕM j ( j = 1, . . . ,Nj).

Select a reference breathing state ι̂ (∀P : ÎP = IP,̂ι) {e.g.
maximum exhale}
for each patient P do

for each breathing state j do

Estimate intra-subject motion field ϕϕϕP j between ref-
erence phase ι̂ and breathing state j {section 2.1}

end for

end for

Generate the average atlas image M for reference breath-
ing phase ι̂ {algorithm 1}
for each patient P do

Calculate an affine transformation AAAPM and a non-
linear transformation ϕϕϕPM to map reference image ÎP

to the atlas image M

end for

for each breathing state j do

for each patient P do

Apply AAAPM and ϕϕϕPM to map the intra-subject motion
fields ϕϕϕP j into the coordinate space of M.

end for

Generate a mean motion field ϕϕϕM j by averaging the
mapped intra-patient motion fields of all patients.

end for
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(a) (b)

Figure 3: Visualization of the displacement field of patient 01 estimated with non–linear intra–patient registration (a) and

the predicted displacement field using the mean motion model (b). The magnitude of the displacement fields inside the lung is

visualized color–coded.

3. Results

To capture the respiratory motion of the lung 4D CT im-
age sequences were acquired from 12 lung cancer patients
during free breathing using a 16-slice CT scanner operated
in cine-mode [LPN∗05]. Synchronized spirometry measure-
ments were acquired to associate the CT scans with tidal
volumes. The resulting spatiotemporal series of CT scans
were used to reconstruct 4D CT data sets [EWS∗07] com-
posed of 10 3D data sets representing different states of the
breathing cycle. Our 4D image reconstruction method per-
mits the free choice of the reconstructed respiratory states
(see [EWS∗07] for details). Therefore, the temporal cor-
respondence between the 4D image sequences can be en-
sured. Due to memory and computation time restrictions the
3D volumes were downsampled to a spatial resolution of
320× 320× 220 voxels with 1.5× 1.5× 1.5 mm. A clini-
cal expert delineated lung and tumor in the images.

The generated mean motion model shall represent the
healthy respiratory motion. Due to the possibility that the tu-
mor influences breathing motion we excluded three patients
with a tumor size of more than 3 cm from model genera-
tion; for smaller lung tumors the overall impact of the tumor
upon breathing patterns can be neglected [PFLea04]. None
of the remaining patients show a prevalence of emphysema
or other lung disorders that affect lung motion. Thus NP = 9
data sets remain for model generation.

In the first step, we compute patient–specific transforma-
tions between the breathing state of maximum inhale and
maximum exhale (reference state) using the algorithm de-
scribed in section 2.1. We chose maximum exhale as refer-
ence respiratory state because it has been shown to be most
reproducible during acquisition. A quantitative evaluation of
various non-linear registration methods for motion estima-
tion was performed in previous studies [Bro07, VKvB∗08].

Those studies have shown that the precision of non-linear
registration methods is in the area of the inter-observer vari-
ability of manual landmark detection. We validated the cor-
rectness of the registration results by visual inspection. An
analysis approved the invertibility of the resulting deforma-
tions (positiv jacobian for all voxel). In fig. 1 the magnitude
of displacement fields of three patients is visualized.

The 9 max. exhale images and intra–patient motion mod-
els are used to generate an average lung motion model. In fig.
2(a) a slice of the constructed average lung is shown. An ac-
curate registration of the lung boundary and a good registra-
tion of structures inside the lung can be observed. Structures
outside the lung are not matched well because the registra-
tion is restricted to the lung region. The displacement mag-
nitude of the mean motion model is visualized in fig. 2(b). A
smooth transition from large motion amplitudes near the di-
aphragm to small motion amplitudes near the tip of the lung
is visible. Despite the averaging in the Euclidean space the
jacobian of the mean displacement is positive for all voxels.
However, this can not be ensured in general.

For a quantitative evaluation of the model, we used six
test data sets with small tumor sizes (01 – 06) and the three
test data sets with larger tumors (10 – 12). For each of the
data sets 01 to 06 the mean motion model was generated us-
ing the remaining NP = 8 patient data sets. Patient 12 has
tumors in the left and right lung. Due to the large tumor size
of the right lung tumor (> 5cm) this patient is excluded from
the model generation, but in table 1 and 2 motion amplitudes
and prediction accuracies for the small tumor in the left lung
are shown. For each test data set the mean motion model is
transformed into its coordinate space and used to warp the
expert generated lung and tumor segmentation at maximum
exhale towards maximum inhale. Here, the acquired spirom-
etry measurements ∆Vair are exploited to scale the displace-
ment as described in section 2.3. The warped exhale segmen-
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tation is compared to the expert segmentation in the max-
imum inhale images by computing the volumetric overlap
(dice coefficient). Furthermore, we calculate overlap coeffi-
cients between the unregistered expert segmentation images
and overlap coefficients obtained by applying the patient–
specific deformation fields to warp the exhale segmentation.
The computed overlap coefficients and the motion amplitude
of the tumor centre from exhale to inhale are summarized in
table 1. The overlap coefficients between the expert segmen-
tation at maximum exhale and maximum inhale (column 3
and 4) are a measure for the error, in case that only a static
3D image is used for irradiation planning. The overlap co-
efficients in columns 5 and 6 specifiy the performance of
patient–specific registration using the 4D image data. The
results of our prediction model are shown in the last two
columns. Here, no patient-specific 4D image information is
used to predict lung and tumor motion.

For comparing the three methods (static, patient–specific
registration and model based prediction) we use a measure
called statistical relevance r [GU98]. Here, two figures of
merit f1 and f2 measure the quality for algorithm 1 and 2 and
a value of zero indicates perfect performance of one method.
The relevance of improvement in performance by algorithm
1 over algorithm 2 can be defined in by:

r1/2 = 100 ·

(

1−
f1

f2

)

,

where f1 < f2 is assumed. We define the figures of merit by
1 minus the overlap coefficient. The statistical relevance be-
tween the three methods are summarized in table 2. The sta-
tistical relevance is defined to be positive, if the first method
performs better and negative if the second method performs
better.

Regarding patient 01 – 06 in table 1, the average overlap
of the predicted lung segmentation is 92% assuming no mo-
tion (static), 97% using non–linear registration and 95% for
the model–based prediction. The average overlap for manual
and predicted tumor segmentations are 44%, 67%, and 61%,
respectively. However, the calculated overlap coefficients re-
flect not only registration and prediction accuracy but also
inaccuracies of the manual segmentation ground truth. Par-
ticularly, an exact manual segmentation of the tumour is dif-
ficult and deviations appear between the segmentations at
different respiratory states. These inaccuracies in the ground
truth lead to low overlap coefficients. Therefore, even a per-
fect prediction result would not reach an overlap coefficient
of 1 and a statistical relevance of 100%. Furthermore, all pre-
diction methods fail for the tumor of patient 02 and patient
12 (left lung) because these tumors are very small (approx.
1cm diameter) and show a large motion amplitude. Regard-
ing all patients with tumor motion less than 20mm, the av-
erage overlap is 60% for static, 82% for registration–based
and 75% for model–based prediction of tumor motion.

Summarizing the values in table 1, the difference in pre-
diction quality (measured by overlap coefficients) between

non–linear registration and model–based prediction is ap-
prox. 10%. In our opinion this is an astonishing result, taking
into account that the model–based prediction was obtained
without knowledge of the individual breathing dynamics,
whereas the patient–specific registration relies on individual
4D image data.

Regarding the statistical relevance values for patient 01 –
06 in table 2, the average relevance of improvement in lung
motion prediction achieved by using patient–specific regis-
tration instead of assuming no motion (static) is 60% for the
lung and 45% for the tumor. The mean motion model can
improve motion prediction in average by 40% for the lung
and 30% for tumors compared to the static case. And the av-
erage relevance of improvement in lung motion prediction
by using registration instead of the model–based method is
28% for the lung and 20% for the tumor.

In two cases, the overlap coefficients of the model de-
crease compared to the prediction without motion informa-
tion. In one case, the tumor is located near the hilum, where
high anatomical variations impede the inter–subject regis-
tration. In the other case, the breathing motion is influenced
by a large tumor. Furthermore, it can be observed that for
both methods (registration and model–based) the accuracy
of tumor prediction decreases dramatically for tumor mo-
tions ≥ 20mm.

4. Discussion and Conclusions

In this paper we proposed a method to generate a mean mo-
tion model of the lung. The model is generated using of 4D
CT data sets and the modeling process is based on intra- and
inter-patient registration. Methods were presented to use this
model to predict of breathing motion without knowledge of
4D information.

The usability of the model for the prediction of lung and
tumor motion was investigated in order to prove the capac-
ity of our approach to represent the general behavior of res-
piratory motion. We conclude from our results that such a
model has the capability to provide valuable a-priori knowl-
edge in many fields of applications. For example, it can be
used to make subject–specific motion estimation algorithms
more robust and precise.

Some clinical studies arrived at the conclusion that there
is no dependency between tumor localization and tumor mo-
tion [SMF∗01,vSdKLNV∗03]. This would contradict the as-
sumption of similar breathing dynamics between patients.
However, those studies disregard the influence of patient–
specific lung volumes and tidal volumes. Our proposed pre-
diction method uses a registration step to adapt the mean
motion model to the patient’s lung shape and a scaling step
to account for subject–specific motion amplitudes. These are
necessary steps for motion prediction and inter–patient com-
parison of respiratory motion patterns. However, our predic-
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Tumor static patient–specific model–based

Pat. motion (without registration) registration prediction

(mm) lung tumor lung tumor lung tumor
01 12.6 0.909 0.694 0.964 0.775 0.941 0.725
02 26.7 0.876 0 0.946 0 0.949 0.056
03 7.5 0.947 0.584 0.978 0.877 0.978 0.818
04 7.1 0.953 0.579 0.981 0.760 0.967 0.577
05 12.0 0.924 0.217 0.974 0.737 0.952 0.756
06 6.2 0.916 0.585 0.963 0.842 0.929 0.739

Average – 0.92 0.44 0.97 0.67 0.95 0.61

10 8.5 0.897 0.696 0.963 0.923 0.925 0.837
11 0.8 0.894 0.814 0.961 0.831 0.947 0.780
12 20.0 0.900 0.002 0.952 0.233 0.944 0.109

Table 1: Evaluation of model–based prediction accuracy: volumetric overlap (dice coefficients) for lung and tumor and the

approximated tumor motion (see text for details).

Tumor statistical relevance statistical relevance statistical relevance

Pat. motion registration / static model / static registration / model

(mm) lung tumor lung tumor lung tumor
01 12.6 60.4 26.47 35.2 10.1 38.9 18.2
02 26.7 56.4 0 58.9 5.6 -5.5 -5.6
03 7.5 58.9 70.4 58.5 56.3 0 32.4
04 7.1 59.6 42.9 29.8 -0.5 42.4 43.2
05 12.0 65.8 66.4 36.8 68.8 45.8 -7.2
06 6.2 55.9 61.9 15.5 37.1 47.8 39.5

Average – 59.4 44.7 39.1 29.6 28.2 20.1

10 8.5 64.1 74.6 27.2 46.4 50.7 52.8
11 0.8 63.2 9.1 50.0 -15.5 26.4 23.2
12 20.0 52 23.1 44.0 10.7 14.2 13.9

Table 2: Evaluation of model–based prediction accuracy: the statistical relevance between patient–specific registration and

model–based prediction and the approximated tumor motion (see text for details).

tion model can not be used, if breathing dynamics is influ-
enced by lung disorders or large tumor sizes.

In our current work, we have only used nine subjects to
build the atlas. We will improve the accuracy of the mean
motion model by increasing the number of subjects. Fur-
thermore, in the current model only maximum exhale and
maximum inhale are taken into account. We will generate
and evaluate more detailed motion models by increasing the
number of breathing states in order to analyze the ability
to capture tumor trajectories and hysteresis. In this paper
a mean motion model of the lung is determined. It would
also be interesting to know more about the variances be-
tween lung motion of different patients. Our current work
is focused on the implementation of the averaging and trans-
formation steps in a log–Euclidean framework [ACPA06].
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