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Abstract. Statistical models have opened up new possibilities for the
automated analysis of images. However, the limited availability of repre-
sentative training data, e.g. segmented images, leads to a bottleneck for
the application of statistical models in practice. In this paper, we pro-
pose a novel patch-based technique that enables to learn representative
statistical models of shape, appearance, or motion with a high grade of
detail from a small number of observed training samples using low-rank
matrix completion methods. Our method relies on the assumption that
local variations have limited effects in distant areas. We evaluate our ap-
proach on three exemplary applications: (1) 2D shape modeling of faces,
(2) 3D modeling of human lung shapes, and (3) population-based mod-
eling of respiratory organ deformation. A comparison with the classical
PCA-based modeling approach and FEM-PCA shows an improved gener-
alization ability for small training sets indicating the improved flexibility
of the model.

Keywords: statistical modeling, high-dimension-low-sample-size prob-
lem, low-rank matrix completion, virtual samples

1 Introduction

Statistical models play an important role in several tasks in computer vision and
image analysis, such as image segmentation and object classification. These mod-
els aim to represent properties like shape or intensity of a class of objects based
on a population of observed instances. However, collecting an adequately large
and representative training population is often laborious and challenging, partic-
ularly if dimensionality and complexity of the observed objects increase. There-
fore, many applications suffer from the high-dimension-low-sample-size (HDLSS)
problem. In the application of statistical shape models (SSMs) [7] or eigenfaces
(eigenimages) [27] for segmentation or recognition tasks, a small sample size
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Test shape

Adapted model

Fig. 1: Example application of the patch-based modeling approach using only
two training shapes: Classical models only learn the global transition between
the two shapes. The patch-based model combines local shape details, and can
adapt to test shapes showing local properties of both shapes.

results in a limited flexibility of the model and details can not be represented
adequately (see Fig. 1).

This paper proposes a method for statistical shape, appearance, and motion
modeling with increased ability to adapt to local details, thus, increasing the
flexibility of models generated from few training samples. The method is based
on the assumption of locality, i.e. we assume that local variations in shape, in-
tensity, or motion have limited effects in distant areas. This allows the model
to combine local variations observed in different training samples while preserv-
ing overall object properties, i.e. generating valid instances. During the learning
phase, the objects are partitioned into patches and distant patches of different
samples are fused into virtual samples. By doing so, a very large number of vir-
tual samples can be generated from few training instances. To avoid the problem
of discontinuities at patch borders, a sparse sampling is performed and the model
generation is formulated as a low-rank matrix completion problem. Thus, its left
to the model to ”fill in” fitting information between patches of different training
instances. We validate the proposed approach using three exemplary applications
in the fields of computer vision and medical image analysis: (1) 2D shape mod-
eling of faces, (2) 3D modeling of human lung shapes, and (3) population-based
modeling of respiratory organ deformation. Evaluations show that our model
features an increased generalization ability for problems of different complexity
while generated instances are still valid.

1.1 Related Work

Statistical shape models. Since their introduction in the early 1990s [7], sta-
tistical shape models have proven to be effectively addressing a large num-
ber of image segmentation problems. The most generic method to generate
a SSM is to build a point distribution model (PDM) by applying a principal
component analysis (PCA) to the sample matrix X = (x1, . . . ,xn) contain-
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ing a given set of n training shapes. Each training shape xi is represented
as a m-dimensional vector composed by landmark points or pseudo-landmarks
xi = (x1, y1, z1, . . . , xm3 , y

m
3
, zm

3
)T . There is a variety of other shape represen-

tations (see [13] for an overview), but landmark-based systems are the most
popular ones.

Eigenimages and population-based deformation models. Eigenfaces (or eigenim-
ages) [27] is the application of PCA-based methods for intensity modeling, where
each training image is represented in a sample vector xi by concatenating the
pixel values. Similar to eigenfaces, PCA-based methods can be applied to a pop-
ulation of deformation fields. This approach has many applications in medical
image analysis, e.g. to model respiratory or cardiac organ deformations [10], for
morphometric studies in computational anatomy or as priors for atlas-patient
matching [25,24]. The typical dimensionality of those models is between several
ten thousands and several millions, and the HDLSS problem is intensified by
the limited availability of medical image data and the laborious generation of
application-specific training sets.

The HDLSS problem in statistical modeling. Generally, two different ways exist
to tackle the HDLSS problem in statistical modeling: (1) Only observed training
samples are used but changes are made to the modeling process to allow for
higher flexibility. (2) The modeling approach remains (largely) unchanged but
additional virtual training samples are generated. Common patch-based and hi-
erarchical techniques applied in shape modeling, object classification, or recog-
nition tasks [16,31,29,19,8,5,30] belong to the first category. In patch-based ap-
proaches for object classification [16,31], the samples are subdivided to model
features of small regions independently. These approaches are, however, lim-
ited to classification tasks as they do not learn a consistent generative model
as needed for, e.g, segmentation tasks. The patch-based shape modeling ap-
proach for medical image segmentation proposed in [30] follows the same idea
and independently models different parts of an object. This approach also does
not generate a consistent model and thus the consistency needs to be enforced
during model application. Hierarchical approaches used in shape modeling [8,5]
subdivide the (generative) model into several parts for increased flexibility. Com-
mon approaches belonging to the second category generate virtual samples by
applying (random/heuristic) transformations to individual training instances or
simulate different noise levels, location errors or lightning effects [29,15,6].

Conceptually, our approach belongs to the second category. However, our
work differs from previous works and contributes to the state-of-the art in two
major aspects: (1) We use sparse virtual samples combining information of dif-
ferent observed samples and (2) elegantly unify virtual sample completion and
learning of a generative model. The second aspect guarantees the reconstruction
of valid (but perpetuated) instances, and although our method is motivated by
the HDLSS problem occurring in medical applications, it could be of interest for
other applications, e.g. for data augmentation in the context of deep learning.
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2 Methods

We begin by briefly describing the generation of classical point distribution mod-
els and its relation to matrix factorization. As introduced in the last section, our
training samples are given by m-dimensional vectors xi that are assembled in the
data matrix X = (x1, . . . ,xn). The central step to build a PDM is a principal
component analysis of the data matrix X and a dimensionality reduction by se-
lecting only the principal components corresponding to the k largest eigenvalues
[7]. The problem can be formulated as the low-rank approximation

M̂ = arg min
M
‖X̃−M‖2F s.t. rank(M) = k, (1)

where X̃ is the centered data matrix. A singular value decomposition (SVD)
X̃ = ŨΣ̃ṼT can be applied to solve Eq. (1), followed by selecting the right and
left singular vectors associated with the k largest singular values σ1 ≥ σ2 ≥
. . . σk. M̂ is then given by the truncated matrices M̂ = ŨkΣ̃kṼ

T
k . The number

of basis vectors k is usually controlled by setting a threshold as follows

∑k
i=1 σ

2
i/∑n

i=1 σ
2
i
≥ τ, (2)

where common values for τ are 0.9 – 0.98. The truncated matrix Ũ ∈ Rm×k
defines an orthonormal basis and together with a distribution of the shape pa-
rameters (the weights associated with each basis vector) they define the classical
statistical model.

Now, let us assume that data is missing in the observed samples and let Ω
be the subset of [m]× [n] of the available entries in the data matrix X ∈ Rm×n.
A statistical model can be generated by solving the following low-rank matrix
completion problem:

M̂ = arg min
M
‖PΩ(X)− PΩ(M)‖2F s.t. rank(M) = k, (3)

with PΩ being the projection operator

(PΩ(X))ij =

{
Xij (i, j) ∈ Ω
0 else

. (4)

If a solution of Eq. (3) is found, basis and variances of the model are given by

the SVD M̂ = UΣVT .
The theoretical properties of low-rank matrix completion (MC) and condi-

tions for a successful matrix recovery are well studied, see e.g. [4]. Available
methods to solve Eq. (3) can be roughly divided into methods based on nuclear
norm minimization (e.g., singular value thresholding (SVT) [3] and the projected
proximal point algorithm (ProPPA) [17]) and algorithms based on minimization
on the Grassmann manifold (e.g., OptSPACE, GROUSE and GRASTA [12]).
A disadvantage of the Grassmannian-based approaches is that an upper-bound
guess of the desired rank is needed, on the other hand, some of these algorithms,
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like GROUSE and GRASTA, allow online matrix completion and therefore the
application in large scale problems.

In our applications, difficulties arise from the ill-conditioned nature of the
data matrix X resulting in large reconstruction errors and slow convergence for
many MC algorithms [21]. However, recently, several algorithms were proposed
to improve the performance for those matrices [21,22,14]. Among these, polar
incremental matrix completion (PIMC) is based on the GROUSE algorithm and
can be applied to streaming data [14].

2.1 Low-rank matrix completion of ill-conditioned matrices

This section briefly introduces the polar incremental matrix completion (PIMC)
algorithm used to solve Eq. (3) in our applications. For a more detailed derivation
and description we refer the reader to [14].

To enable an online update of the model, the incremental update of basis
U and singular values Σ is needed. Let Mt = UtR

T
t be the estimated rank

k-factorization of the (sparse) data matrix Xt ∈ Rm×t for t observed samples.
Given a new sample xΩt with observed entries Ωt ⊂ {1, . . . ,m}, we can compute
weights wt = arg minw ‖UΩtw − xΩt‖22 to interpolate values at unobserved
entries

x̃t =

{
xΩt on Ωt
Utwt otherwise

, (5)

where UΩt contains only the rows Ωt of U. To update Mt according to the new
sample, we have to solve for

min
M
‖[UtR

T
t x̃t]−M‖2F s.t. rank(M) = k. (6)

Given that Rt = VtΣt for an orthogonal matrix Vt, iterative SVD [2] can be
used to efficiently solve Eq. (6) using

[UtR
T
t x̃t] =

[
Ut

rt
‖rt‖

] [
Σt wt
0 ‖rt‖

] [
VT
t 0

0 1

]
(7)

and performing an SVD on the central (k + 1) × (k + 1) matrix

[
Σt wt
0 ‖rt‖

]
=

ÛΣ̂V̂T followed by the update

Ut+1 =

[
Ut

rt
‖rt‖

]
Û, Vt+1 =

[
VT
t 0

0 1

]
V̂

Σt+1 = Σ̂, or Rt+1 = Vt+1Σ̂ (8)

and dropping the smallest singular value and corresponding singular vector to
obtain a rank k factorization.

As shown in [2] and [14], this algorithm is equivalent to GROUSE for a
specific step size, if setting Σt = I and Vt = Rt in Eq. (7) and using the
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updates in Eqs. (8). This reveals the sensitivity of GROUSE to ill-conditioned
matrices, because constant singular values are assumed.

To overcome this restriction, the authors of [14] propose to use the follow-
ing approach to update the model in each step: Let Rt = ṼtS̃t be the polar
decomposition of Rt into the matrix Ṽt ∈ Rm×k with orthonormal columns,
and a positive semidefinite matrix S̃t ∈ Rk×k. Although S̃t is not diagonal it
presents an estimate of the singular values in the current subspace. Let further

γt =
κ0

∑
t ‖xΩt‖2
‖S̃t‖F

be a scaling value, then Eq. (7) can be rewritten as

[UtR
T
t x̃t] =

[
Ut

rt
‖rt‖

] [
γtS̃t wt

0 ‖rt‖

] [
1
γt

ṼT
t 0

0 1

]
, (9)

and Eqs. (8) are used to update the model. In contrast to iterative SVD, the
re-computation of S̃t using the polar decomposition is required, because wrong
estimates of the singular values may appear due to the missing data. Further, the
interpolated data vectors x̃t are used in the update, i.e. the singular values will
increase according to the interpolated data and not according to the observed
data xΩt . Therefore, a rescaling to the norm of the actual observed data is
performed using the parameter γt, with κ0 � 1 preventing abrupt changes.

2.2 Patch-based model generation

We now come back to the HDLSS problem in statistical modeling (cf. Sec. 1). To
overcome this problem, several approaches for SSM generation propose to learn
local models by dividing the shape into parts. A difficulty arises in recombining
these local models to a global shape.

The main idea of the presented method is to combine local information of dif-
ferent training shapes in artificially generated virtual samples. Instead of learn-
ing individual local models or recombining these local variations into complete
new training samples, we provide only partial information to learn the model.
Thus, we exploit the low-rank structure of the subspace to find a model that fits
the generated samples. In previous work probabilistic PCA was used to learn
shape models from partial information [20]. Our approach for model generation
is illustrated using the simple one-dimensional example in Fig. 2. The training
samples are given by two scaled and shifted sine functions. A large number of
sparse virtual samples is generated by selecting small patches randomly from
both training samples (Fig. 2(b)). The virtual samples are agglomerated in the
sparse data matrix X and the low-rank matrix completion problem given in
Eq. (3) is solved to compute the completed matrix M = URT of given rank k.
Fig. 2(c) shows the reconstructed virtual samples. The computed basis U can
now be applied to approximate a new sample y by

ŷ = Uŵ with ŵ = arg min
w
‖Uw − y‖22, (10)

as illustrated in Fig. 2(d). Here, a damped sine function is used to show the ap-
proximation quality. Although the function resembles the second training sample
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(a) training set (b) sparse patch se-
lection

(c) completed vir-
tual sample

(d) model adapta-
tion

Fig. 2: Demonstrative example describing the patch-based modeling method us-
ing two sinusoidal training shapes (see text for details).

near zero and approaches the first sample near 5π, classical global models can not
achieve a good fitting result. In contrast, the patch-based method can combine
local properties of both training samples and allows for a good approximation of
the damped sine function. Interestingly, the approximation quality decreases in
the interval [5π, 6π] and the approximated curve is forced to be periodic. This
behavior results from the fact that we learned the periodicity of the training
functions by applying periodic boundary condition during the patch-selection
(see Fig. 2(c)).

We can summarize the patch-based model generation algorithm as follows:

Algorithm 1 Patch-based model generation (batch)

Require: N training samples xi ∈ Rm, i = 1, . . . , N , estimated rank k, sparsity
p ∈ (0, 1), number of virtual samples n� N

Generate sparse virtual samples:
for each xΩj , j = 1, . . . , n do

Apply a patch selection strategy to select random patches from different training
samples until at least p ·m entries of xΩj are filled
Agglomerate xΩj in sparse matrix X ∈ Rm×n

end for
Solve low-rank matrix completion:

Compute M = URT of rank k by solving Eq. (3)
using the algorithm described in Sec. 2.1

Estimate a distribution of the shape parameters from matrix R or from estimated
singular values Σ̂ ( Eq.(8) )

Output: Model defined by orthonormal basis U and associated distribution of the
shape parameters, e.g. w ∼ N (µ, diag(σ1, . . . , σk))

To select suitable parameters for Alg. 1, the dependency p·mn ≥ ζ(m+n−k)k
can be used, where ζ is the oversampling ratio [21]. Most algorithms for matrix
completion yield robust results with ζ ≈ 6. In our applications we selected a
sparsity of p = 0.3, lower values increase the training size and higher values
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complicate the selection of suitable patches. The estimated rank k is application
dependent and will be discussed in Sec. 3. To estimate a distribution of the model
parameters, one possibility is to assume a normal distribution N (µ̂, σ̂1, . . . , σ̂k)
and compute standard deviations and mean from the matrix R.

2.3 Patch selection and domain partitioning

The remaining component of the algorithm is the generation of virtual samples,
i.e. the selection of patches to fill the entries of xΩj . This step affects the prop-
erties of the generated model and at the same time interacts with the matrix
factorization algorithm. In general, the applied patch selection strategy depends
on the regarded application. Here, we purposely apply simple sampling strategies
to show the strength of the presented approach in different applications without
elaborate fine tuning.

The guiding assumption is that local variations have limited influence in
distant areas. Consequently, global variations in pose and orientation have to
be removed from the training set before model generation. Furthermore, prior
knowledge about the minimum distance between independent areas is needed
to partition the domain of interest (surface mesh or image space), and each
partition should be able to reflect local domain properties, e.g. orientation or
curvature. For each virtual sample to generate, partitions are randomly assigned
to different training samples. The number of training samples used to generate
each virtual sample influences the globality of the model and the needed rank –
a small number (two or three) was sufficient in our tests.

Sampling large partitions would lead to block-like structures in the data
matrix, which impedes the convergence of the matrix completion algorithm [14].
Therefore, many smaller patches drawn from each partition are used to fill the
(incomplete) data matrix. Patches sampled from different training shapes should
be detached to avoid the learning of discontinuities at patch stitches.

A partitioning of the domain is obvious if multiple objects are modeled to-
gether, e.g. the facial structures in Fig. 3. For applications like eigenfaces or
deformation models the partitioning is simple because the rectangular image
space can easily be divided. For surface models existing mesh partitioning meth-
ods [26] can be used. In our experiments, we apply a generic mesh partitioning
approach, which randomly partitions a triangulated genus-0 surface into equally
sized parts. First, the triangulated surface is mapped onto a unit sphere using
an unconstrained energy-based method [11] and subsequently the unit sphere is
partitioned into regions of equal area [18].

3 Experiments and Applications

To demonstrate the practicability of our approach, we evaluate the patch-based
model for three different types of models: 2D contour data, 3D surface meshes,
and 2D deformation fields. The proposed algorithm is compared with the classi-
cal modeling approach (see Sec. 2) and systematically evaluated using different
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Fig. 3: 50 example contours of the IMM face database [23] (left), and randomly
generated contours from N = 4 training samples using the classical model (mid-
dle) and the patch-based model (right). The patch-based model shows a higher
variability while the overall shape is preserved.

training sizes. For 2D contour data, our approach is further compared with the
FEM-PCA model of Cootes and Taylor [6] combining the standard PCA and fi-
nite element method (FEM). This approach also addresses the HDLSS problem
and has shown to perform among the best in [15]. FEM-PCA manipulates the
data covariance matrix and can therefore only be applied for data of moderate
size.

Generalization error and specificity error introduced by Davies et al. [9] are
used as quantitative performance measures for the statistical models. The gen-
eralization error describes the ability to model unseen shapes, and is measured
by the distance of the closest model instance to the samples in a test set. The
specificity error indicates the validity of the shapes produced by the model. For
specificity estimation, a high number of random model instances are generated
and the minimal distance to one of the samples in the database is computed.
Note that small values indicate better models for both measures.

3.1 2D contour data of the IMM face database

In our first experiment, we apply our algorithm to facial annotations contained
in the IMM face database [23]. This database provides 58 facial landmarks of
40 subjects with 6 different expressions (240 in total). Three of the expressions
in the database contain rotations of the head, which contradicts our assumption
of locality. Therefore, these expressions are excluded and 120 samples (40 sub-
jects, 3 expressions) were used in total. Fig. 3 shows 50 example contours of the
provided faces after alignment with similarity transformations.

Experiment design: To evaluate the performance of the patch-based ap-
proach, models are generated for varying numbers N of available training sam-
ples. For each model generalization ability and specificity are computed and com-
pared to the classical model using identical training and test sets. The N training
samples are chosen randomly from the 120 available samples together with a dis-
junct test set of 30 samples. For each size N the experiments are repeated 60
times and the resulting measures are averaged. After model computation each
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sample in the test set is approximated using Eq. (10) and average landmark
distances are computed to determine the generalization ability. To measure the
specificity, 1000 random samples are generated using the computed model ba-
sis U and normally distributed weights w ∼ N (µ̂, Σ̂ = diag(σ̂2

1 , . . . , σ̂
2
k)), with

standard deviations and mean computed from the estimated matrix R.

Virtual sample generation: Each facial landmark in the IMM database is
labeled with the associated facial structure (eyebrows, eyes, nose, mouth and
jaw) so that a partitioning is already given. The different parts are not connected
whereby the patch selection strategy is further simplified. The following strategy
is applied to generate one virtual sample xΩj : Two training samples xA and xB
are selected randomly (possibly A = B) and each partition is randomly assigned
to one of the drawn samples xA or xB . Then, patches of size 1 (landmarks) are
drawn randomly and depending on the associated facial structure the coordinates
(values) are taken from xA or xB . The last step is repeated until p ·m of the
entries of xΩj are known.

Determining the model parameters: We computed a rank of 13 for the com-
plete set of 120 samples using Eq. 2 with a threshold of τ = 0.95 for the ratio of
the total variance. Therefore, for the classical PDM the rank k = 13 if N > 13
and k = N otherwise is used. The proposed patch-based modeling method is
designed to learn additional variations beside the inter-sample variance, this is
taken into account by using a higher rank of k = 13 + δ, where δ is set arbi-
trary to 10 in this experiment. To show the ability to generate a reasonable and
feasible model independent of the number of training samples the rank is left
constant for all training sizes. The other parameters are chosen as p = 0.3 and
n = 400. The FEM-PCA model uses the same rank as the patch-based approach
and the control parameter is set to α = α1/N as suggested in [6] with α1 = 20.

3.2 3D lung surfaces of the LIDC database

In the second experiment, 3D shape models of the right lung are generated.
This experiment is based on image data from the publicly available LIDC-IDRI
database [1] that provides > 1000 thoracic 3D CT images of patients with lung
nodules. Here, we use a subset of N = 160 randomly selected images and ex-
tract the lungs via thresholding. Based on these segmentations, an average lung
shape is computed as described in [10], which is subsequently triangulated and
decimated to obtain 2000 pseudo-landmarks. After registering the atlas to all
images by applying an open-source registration method [28], the resulting de-
formation fields are used to propagate the landmarks to all 160 lungs to define
correspondences for the shape modeling process.

For virtual sample generation, the lungs are partitioned into 10 randomly
placed areas of equal size generated by the approach described in Sec. 2.3. Using
these partitions, the same strategy as used for the face data in the first exper-
iment is applied. The rank estimation leads to a rank of 21 (τ = 0.95) for the
complete set of 160 shapes. The experiments are repeated 25 times, and the
parameters of our approach are set to δ = 20, p = 0.3, and n = 1000.
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Fig. 4: CT images of two patients for different breathing phases and magnitudes
of associated motion fields describing the respiratory lung deformation. The
dotted line indicates the partitioning of the image domain, and the squares show
the patch selection for one sparse virtual sample.

3.3 Respiratory lung motion

At last, we use the proposed method to generate population-based models for
respiratory lung motion. We use 2D saggital slices of lung CT images of N = 38
patients and a size of 160 × 200 pixels acquired at two breathing phases: end
inspiration and end expiration. An open-source image registration toolbox [28] is
applied to estimate a dense deformation field to describe the respiration-related
organ deformations. Following the approach in [10], all images and the associ-
ated deformation fields are transformed into a common atlas space to establish
anatomical correspondence between the patients. Fig. 4 shows example images
and computed motion fields for two patients.

Let Φ1, . . . ,ΦN be the (aligned) deformation fields with each pixel Φ(x, y) =
(u, v) describing the displacement from inspiration to expiration. By concatenat-
ing the u and v components of all pixels, each image can be represented by a
sample vector of dimension m = 64000. Virtual sample generation starts by
random selection of two training samples ΦA and ΦB and a seed pixel (sx, sy).
Then, random patch centers (px, py) are determined and all displacements in-
side a patch of size 9× 9 are used for the virtual sample. If the distance between
(sx, sy) and (px, py) is below ε the values are sampled from ΦA and from ΦB

otherwise. The distances between patch centers are required to be larger than
κ > 9

√
2. Patches are selected until p ·m entries are filled. The generation of one

virtual samples is sketched in Fig. 4(right).

The estimated rank for all available training samples is k = 27 (τ = 0.95)

and the parameters are set to δ = 10, p = 0.3, n = 800, ε =

√
(1602+2002)

3 and
κ = 15. The experiments are repeated 25 times for each size of the training set.
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4 Results

The condition numbers of the complete data matrices were computed for all
experiments using the largest and lowest singular values by σ1

σk
where k is the

rank at τ = 0.95. The computed condition numbers are 423 for the IMM faces,
783 for the 3D lung surfaces and 95 for the deformation fields, showing that
all problems are highly ill-conditioned, particularly the surface modeling. To
validate the suitability of PIMC for our applications, random matrices of size
6000×1000 with condition number 1000 and rank 20 were generated as described
in [14]. Fig. 5 shows the average residual error and the required computation time
for GROUSE, PIMC and ProPPA [17] and illustrates the suitability of the PIMC
algorithm for that type of problems.

ROC-like analysis: N = 10 training samples of the IMM face database are
used to compute a classical PCA model, a FEM-PCA model, and a patch-based
model. Generalization and specificity of these shape models can be controlled
by restricting the variances of the shape parameters. Fig. 6 shows generalization
and specificity for varying variances characterizing the dependencies between
the two measures for the three different shape modeling approaches (average of
30 repeated experiments). The graph shows that for each given level of speci-
ficity our model clearly outperforms PCA and FEM-PCA models in terms of
generalization, except for very low specificity errors where our model performs
equal to the PCA model. For all remaining experiments we use the same model
parameter restrictions for all shape models.

2D contour data of the IMM face database: Fig. 7 (left) compares the gen-
eralization ability and specificity of the patch-based, the classical model, and
FEM-PCA for varying numbers of available training samples. For small training
sets (N ≤ 13) the proposed method improves the generalization error by ≈ 22%,
for larger training sets the improvement is less prominent (≈ 13%). FEM-PCA
shows no substantial improvement compared to the classical model for training
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Fig. 7: Generalization and specificity errors for three experiments comparing the
patch-based model (blue), the classical model (red), and the FEM-PCA model
[6] (green, IMM faces only) given a varying numbers of training samples. Smaller
values indicate better models.

sizes N ≤ 20. As expected, the improvements in terms of generalization ability
come along with higher landmark errors in the specificity tests. Both results
reveal the desired increased variability of the model. However, model generated
instances still represent valid face contours as indicated by an average specificity
value of ≈ 10 pixels and as shown in Fig. 3.

3D lung surfaces: Fig. 8 shows the mean surface and associated deforma-
tion modes generated from the patch-based model (N = 10 training shapes).
Although only local information is provided to the model, it learns global de-
formations in the most important modes. Fig. 7 (middle row) presents gener-
alization ability and specificity depending on the number of training samples.
The generalization ability is improved for small training sizes but approaches the
classical model for N ≥ 20. For this data, the localization error of the pseudo-
landmarks is ≥ 2 mm due to a voxel spacing of 1.5 mm3 of the underlying image
data and an average registration error of ≈ 1.2 mm (see [28]). Therefore, by
using the estimated rank of k = 21 a separation of noise and content in the data
is obtained, and hence no further improvements in terms of adaption accuracy
can be achieved without directly learning the noise.

Respiratory lung motion: In this application, the model obtains the most
evident improvements compared with the classical model, particularly for small
training sizes; e.g. an improvement of 41% was achieved for N = 5, and 36%
for N = 10. The L-shape of the curve indicates that even small training sizes
produce models with low approximation errors. The specificity measures for lung
surfaces and lung motion in Fig. 7 reflects that the dependency of the generated
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Fig. 8: Mean surface and two associated deformation modes of the 3D lung model
generated by the proposed patch-based approach.

model on the randomly selected training samples is more prominent for small
training sizes.

5 Discussion and Conclusion

The contribution of this paper is a patch-based approach for learning of rep-
resentative statistical shape, appearance, and motion models from few training
samples. Our approach is based on the assumption that local variations have lim-
ited effects in distant areas and the model generation is formulated as a low-rank
matrix completion problem that can be efficiently solved using recent algorithms
capable of handling ill-conditioned matrices. In contrast to other patch-based al-
gorithms used to tackle the HDLSS problem, our approach learns a consistent
generative model and contrary to hierarchical techniques, our approach does not
rely on the explicit and non-trivial definition a hierarchy.

Our experiments show that the proposed method can be applied for a vari-
ety of problems and leads to an increased flexibility and generalization ability
while the validity of generated model instances is preserved. We have further-
more shown that the chosen PIMC algorithm is well suited for our intended
applications. Its ability to solve the MC problem online is a key advantage for
large scale problems as arising in deformation modeling where the data needed
oftentimes exceeds the available memory. A disadvantage of this approach is
the need to provide an estimated rank, however, in our experience an accurate
choice is not crucial. It has to be noted that the presented patch-based modeling
approach is not restricted to a specific MC algorithm, and any method that can
handle ill-conditioned matrices can be used, e.g. ProPPA [17] (see Fig. 5). An
important part of our approach is the patch selection strategy because it affects
the generated model directly. But, even simple strategies lead to improved per-
formance compared to other modeling approaches as shown in our experiments.
Furthermore, application-specific prior-knowledge such as a left-right symmetry
or other non-local relations could easily be incorporated.
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An investigation of the computed variation modes revealed that although
only local information was provided to our algorithm, the proposed method
was able to learn the global shape variability as well (see Fig. 8). In this way,
our approach combines local flexibility with well-known properties of classical
models. In future work, we will further analyze the effects of the patch selection
on the generated model. By using varying partitions (e.g., from large to small)
during the virtual sample generation it should be possible to directly enforce the
learning of a consistent hierarchical model with different levels of locality.

Acknowledgement: This work was supported by the German Research
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