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ABSTRACT

A system for the fully automatic segmentation of the liver and spleen is presented. In a multi-atlas based segmen-
tation framework, several existing segmentations are deformed in parallel to image intensity based registrations
targeting the unseen patient. A new locally adaptive label fusion method is presented as the core of this paper.
In a patch comparison approach, the transformed segmentations are compared to a weak segmentation of the
target organ in the unseen patient. The weak segmentation roughly estimates the hidden truth. Traditional
fusion approaches just rely on the deformed expert segmentations only. The result of patch comparison is a
con�dence weight for a neighboring voxel-label in the atlas label images to contribute to the voxel under study.
Fusion is �nally carried out in a weighted averaging scheme. The new contribution is the incorporation of locally
determined con�dence features of the unseen patient into the fusion process. For a small experimental set-up
consisting of 12 patients, the proposed method performs favorable to standard classi�er label fusion methods. In
leave-one-out experiments, we obtain a mean Dice ratio of 0.92 for the liver and 0.82 for the spleen.
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1. INTRODUCTION

Multi-atlas based segmentation of abdominal organs has gained considerable attention in the last years.1�3

Clinical applications comprise hepatic surgery and radiation treatment planning. The bottle-neck task for the
planning phase is the manual expert delineation of the target organs in the patient data. In the abdominal area,
the challenge lies in coping with the very large inter-patient shape and structure variations and dealing with
pathological cases. Three steps usually de�ne a multi-atlas segmentation: registration, label map warping and
label fusion. While in the �rst step the accurate registration is very important, another research focus lies on
the �nal classi�er label fusion of the segmentation candidates.

Several new strategies have been published recently: On a global scale, Asman4 proposed the combination of
bene�ts from multi-atlas approaches and dedicated segmentation methods. Agarwal5 proposed local con�dence
measures to extend the previously developed SIMPLE algorithm. Hao6 uses local texture features to train a
support vector machine for local fusion. Chen7 learns several weak segmentations to build a strong one. Non-local
STAPLE is a reformulation of the original STAPLE algorithm in a non-local means framework incorporating
image intensities into the process.8

Preprocessing of our data consists of manually cropping the z-range of the data, thresholding and a�ne
followed by non-linear registration. In this paper we use a di�eomorphic demons based registration approach.9

After these preprocessing steps we obtain several candidate segmentations which �t the unseen patient more
or less accurately. To unify the candidate segmentations, we present a new local label fusion technique using
adaptive weights in a patch-based framework that takes gray value features of the targeted unseen patient data
into account.
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2. METHODS

2.1 Data and Preprocessing

The data used consists of 12 clinical routine scans with 512x512 pixels and 5 mm slice distance. The number of
slices ranges from 126 to 157; pixel sizes are limited from 0.637 to 0.835 mm. Livers and spleens were manually
segmented by our clinical partners.

To normalize data sets w.r.t. the contained structures a manual z-cropping procedure takes place. The region
selected covers the cranial beginning of the iliac crest to the caudal slices of the heart. By this means, the number
of slices used in the following steps is reduced to 50 on average and the abdominal organs are included in the
remaining data. The next step consists of the removal of structures outside the body box, which could hinder
the image registration process. Patient table, cables and spurious artifacts from the table are removed this way.
Mainly, volume growing and morphological operations are used here. For the a�ne registration step, the data is
thresholded by 0 HU to highlight important structures (bones, inner organs), which help the a�ne registration
to converge fast and provide a coarse overlap of the structures. The thresholding step is motivated by the below
zero Houns�eld values of fatty connective tissue embedding the inner organs. The distance measure chosen is the
sum of squared di�erences (SSD). The result of the coarse registration step is an a�ne transformation matrix,
which is co-applied to the label data.

On completion of these steps, the 11 target data sets are registered to the reference data using a non-linear
registration approach with di�eomorphic demons.9,10 In sum, 132 non-linear di�eomorphic registrations are
carried out, 11 for each of the 12 leave-one-out experiments. The registrations are conducted on the cropped image
data using a four resolution pyramiding scheme. The result of this phase are smooth deformation �elds between
the 11 target and the left-out reference image, which can be used to co-align the associated 11 segmentations to
the unseen reference image.

The intersection and union (see �g. 1a, b) of the individual segmentations are calculated as assisting organ
masks to estimate the organ gray value distribution in the reference image resulting in the mean µorg and
standard deviation σorg (see section 2.3). Another purpose of the masks is to reduce the search space for the
proposed algorithm, see section 2.2.1.

On grounds of the rather anisotropic data all results from the previous steps are used in the resolution with:

� original 5 mm slices and

� 1 mm slices by resampling.

Resampling uses linear interpolation for gray value CT data and nearest neighbor interpolation for the segmen-
tations.

2.2 Neighborhoods and Performance Cues

Majority Voting (MV) and Sum Rule (SR) fusion11,12 are by far the fastest fusion methods and deliver very good
results. The bottleneck of many new fusion algorithms is computation time. To speed up the computations, we
de�ne sparse neighborhoods. Moreover, computation takes place in a band near the supposed organ border only.

2.2.1 Banded Calculation

For this means, the previously calculated organ masks are interpreted as (1) surely included voxels as seen in �g.
1a (intersection of the segmentations) and (2) candidate voxels for the voxels inside the union of all individual
segmentations and outside the surely included voxels (see �g. 1c). Thus, subsequent calculations only take place
in the band of candidate voxels, i.e. the result of an XOR between union and intersection of the segmentations.
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(a) Intersection (white) vs. weak segmentation (gray) (b) Union (light gray) vs. included weak segmentation
(white)

(c) Band (light gray and white) vs. weak segmentation
(gray)

Figure 1: Union, intersection and unsure candidate band: The union of all segmentations around the weak
segmentation of one subject (a). The intersection of the segmentations (b). The resulting banded region of
interest for the calculations (c).
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2.2.2 Sparse Neighborhoods

The core of patch based label fusion is to compare a center patch in the unseen reference patient at a current
voxel xi to other patches in their neighborhood. These neighboring patches are extracted from the target subjects
which are aligned via registration methods to the unseen patient.

Typically, the patch size is smaller than the neighborhood size, see �g. 2a. The de�nition of the neighbor-
hood radius Nrad and patch radius Prad strongly a�ects the performance of the algorithm. Smaller patch and
neighborhood sizes boost the performance of the algorithm while the accuracy of the results may decrease.

Basically, the neighborhood of a voxel consists of adjacent voxels contained in a certain shape. In this work
we restrict ourselves to cubical neighborhood and patch geometry.

The full neighborhood simply consists of all voxels around a center voxel contained in the neighborhood
shape, see �g. 2a. In terms of o�set vectors (m, n, o) given in image coordinates, the neighborhood set N (i) of
a voxel xi can be de�ned as follows:

N (i) =

Nrad⋃
m,n,o=−Nrad

(m, n, o) (1)

A sparse neighborhood only considers a smaller number of voxels compared to the full neighborhood. The
�rst sparse neighborhood proposed here only takes into account every 2nd voxel (see �g. 2b):

N(i) =

Nrad⋃
m,n,o=−Nrad

{
(m, n, o) , m , n , o are all evennumbers

∅, otherwise
(2)

The second �very sparse� neighborhood only takes into account voxels at the outer edges and corners, see �g.
2c. In terms of o�sets, the sparsest neighborhood can be de�ned as:

N(i) =

1⋃
m,n,o=−1

{
(2 ·m · Prad + 1, 2 · n · Prad + 1, 2 · o · Prad + 1) , (m,n , o all 6= 0) ∨ (((i ⊕ j) ⊕ k)

∅, otherwise
(3)

where ⊕ denotes the XOR operator. In this neighborhood the patches compared do not overlap but are still
connected at a face or corner.

To account for anisotropic voxels as present in our data, calculations can be additionally restricted to the
current slice that contains the voxel studied. The reason for this constraint is that with anistropic voxels (5mm
slices) the geometry of the neighborhood can span much more space in z-direction than in x- and y-directions.
Therefore, a metrically more isotropic neighborhood can be achieved using this restriction. A signi�cant compu-
tational performance boost is another bene�t of it. The di�erent neighborhood sizes are shown in tab. 1.

Neighborhood 2 ·Nrad + 1 = 9 Slices Single Slice

Full 93 = 729 92 = 81
Sparse 53 = 125 52 = 25

Very Sparse 14 9
Table 1: Neighborhood sizes for Nrad = 4 and Prad = 2.

2.2.3 Selected algorithms

Based on the previous reasoning the following variations of the proposed method resp. input data are studied:

Our algorithm in tab. 2 is denoted by the short-cut PBLC for �Patch Based Local Con�dence�. Furthermore
we use the algorithms �Simultaneous Truth and Performance Estimation� (STAPLE),13 �Selective and Iterative
Method for Performance Level Estimation� (SIMPLE),14 �Majority Voting� (MV) and �Sum Rule� (SR).11,12
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(a) Full neighborhood (b) Half sparse neighborhood (c) Very sparse neighborhood

Figure 2: Center voxel (thick small square), neighborhood de�nition (grid with thin lines) and patch (thick
square): Every voxel in the neighborhood region of a center voxel is visited (a). Only every second voxel (yellow
small squares) is used for patch comparison (b). Only voxels at the corners and face centers are visited for
comparison (c). The patch radius Prad is set to a value of 2 and the neighborhood radius Nrad equals 4.

Neigborhood In-Plane Resampling to
Alg.-Acronym Density Restriction 1 mm Slices

PBLC 1 full no no
PBLC 2 full yes no
PBLC 3 sparse yes no
PBLC 4 very sparse yes no
PBLC 5 very sparse no yes
PBLC 6 sparse no yes
PBLC 7 full no yes
Table 2: Algorithms variants used and their acronyms.

2.3 Patch-based Label Fusion

Patch-based label fusion for hippocampus and ventricle segmentation was introduced by Coupé:15 A voxel xi is
set to be the center of a cubical (1) neighborhood and (2) patch. Neighborhood size and patch size may di�er
to adapt the algorithm to structure sizes and spatial mismatches from the registrations. Image traversal visits
all voxels, compares the patch under study with patches in the neighborhood and computes a weighted average
label guess by:

Lest (xi) =

∑N
s=1

∑
jεN(i) w (xi, xs,j) · L (xs,j)∑N

s=1

∑
jεN(i) w (xi, xs,j)

(4)

where Lest is the continuous label estimate for a voxel, N is the number of atlases, N (i) refers to the set of
neighborhood voxels for i, w are the weights dependent on the reference data voxel under study xi and the voxel
xs,j in subject s at neighbor j. Finally, L (xs,j) represents the label in the atlas of subject s at position j. The label
estimate Lest is a fuzzy estimate, i.e. with binary label data it ranges from 0 to 1, and the label guess is de�ned
by thresholding with e.g. 0.5. In the weight w the comparison of the reference patient gray value patch P (xi)

centered at xi and the target patient patch with center xs,j takes place as w (xi, xs,j) = exp
(
−
‖P (xi), P (xs,j)‖L2

h

)
.

Here, the negative normalized L2-norm divided by a decay parameter h is used as a patch distance measure,
embedded in an exponential term. Consequently, the weight values lie in the continuum from 0 to 1 and low
di�erences are preferred. The decay parameter h is recommended to be the minimal gray value patch distance
in the L2-norm.

In our proposed method, we use a weak segmentation as additional prior to the deformed atlas label data
sets. Thus, we set the weights introducing local con�dence measuring as follows:
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w (xi, xs,j) = exp

(
−1− J (PwSeg (xi) , Pseg (xs,j))

h

)
(5)

where PwSeg (xi) describes the label patch originating from the unseen reference image gray values that
underwent some weak segmentation; and Pseg (xs,j) is the label patch from the target subject atlas data. Lastly,
J calculates the Jaccard coe�cient and h is the decay parameter. These weights correlate the deformed atlas
segmentations to the hidden truth guessed by a thresholding criterion, our weak segmenter:

∀xεPwSeg (xi) : L (x) =

{
1, if µorg − l · σorg < G (x) < µorg + l · σorg
0, otherwise

(6)

Here, L is the label at voxel x from the label patch, G describes the gray value in the reference image
data, µorg and σorg are the organ normal distribution parameters estimated in the intersection of the candidate
segmentations (see �g. 1c). The standard deviation factor l is dependent upon the organ under study. The
intersection voxels used to estimate µorg and σorg are supposedly surely contained inside the liver resp. spleen
of the reference patient.

On whole image scale, the results of the weak segmentation can look like point clouds where many positively
labeled voxels concentrate in the area of the organ (see �g. 3a).

In summary, the described fusion method computes local similarity resp. con�dence measures in the neigh-
borhood of the studied voxel as weights for the neighboring labels to be averaged.

2.4 Study Set-Up

In a leave-one-out scheme we conduct 12 experiments: per experiment a multi-atlas segmentation is carried out
(see section 2.1) for liver and spleen. It consists of an a�ne and variational registration of the image intensity
data while co-warping the associated label maps. Afterwards the label maps are fused with the proposed seven
method variants and compared to four standard algorithms.

The proposed method is sensitive to the decay parameter h, for which we found a reasonable setting is
0.1. This way, very similar patches in the weak segmentation and the warped atlas label data contribute over-
proportionally to the averaging. The �nal segmentation is generated by thresholding the resulting fusion weight
map with 0.618. The patch radius Prad is set to a value of 2 and neighborhood radius Nrad is chosen as 4. The
organ dependent standard deviation factor l for our weak segmenter is chosen as 1 resp. 3 for the liver resp.
spleen.

3. RESULTS

Figs. 3 and 5 show qualitative results for reference patient 1. Quantitative results for the liver and spleen are
shown in tab. 3 and �g. 4.

Overall, consistent advantages in comparison to the standard methods can be observed. PBLC4-5 mainly are
the overall winners of the contest, which holds true for all evaluation metrics used.

The Dice coe�cients are generally higher for the liver. The Mean Surface Distance globally is lower than the
slice distance of the original data and on average is lower for the larger organ, i.e. the liver, while the Hausdor�
distances are smaller for the spleen.

We take a closer look at the surface distances for one patient to inspect the location of the main errors in this
metric. In �g. 5a the medial area of the liver is shown, here we typically observe a higher distribution of errors
than on the periphery. This is also indicated in �g. 3c where the segmentation in blue leaks out of the yellow
contour which depicts the aimed reference segmentation. The same observation is true for the spleen, the medial
area is depicted in �g. 5b. The organ ensemble is shown �nally in �g. 5c, where we also note that surface errors
are smaller for the spleen than for the liver. In �g. 5c some higher errors can also be noticed on some peripheral
spots of the liver.
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(a) Typical weak segmentation (b) Fusion image

(c) Resulting (blue overlay) vs. reference (yellow con-
tour) segmentation

Figure 3: Intermediate and �nal results: The weak segmentation roughly indicates the organ borders and its inside
by positive label concentration (a). The fusion image shows the fuzzy labeling (b). The expert segmentation is
compared to the guessed segmentation (c).

Organ Liver Spleen
Alg. \ Metric Dice MSD [mm] HD [mm] Dice MSD [mm] HD [mm]

SIMPLE 0.88±0.06 3.30±1.47 31.48±9.30 0.78±0.12 3.49±1.93 27.90±13.04
VoteRule 0.90±0.04 2.99±1.17 29.81±12.99 0.79±0.15 3.33±2.23 24.85±12.03
SumRule 0.90±0.04 3.07±1.18 30.00±12.97 0.79±0.15 3.38±2.26 23.51±11.83
STAPLE 0.88±0.04 3.99±1.49 33.32±14.73 0.71±0.17 5.19±3.44 34.49±16.31

PBLC1 0.91±0.03 2.85±1.06 29.45±11.25 0.79±0.15 3.50±2.47 25.47±10.50
PBLC2 0.91±0.04 2.73±1.05 28.53±11.50 0.79±0.14 3.31±2.10 23.08±12.62
PBLC3 0.91±0.04 2.71±1.03 28.45±11.48 0.79±0.14 3.27±2.08 22.87±12.71
PBLC4 0.91±0.03 2.65±0.95 28.19±11.34 0.80±0.14 3.15±2.04 23.13±12.25

PBLC5 0.92±0.02 2.57±0.83 27.51±11.18 0.82±0.14 3.15±2.39 22.48±11.99
PBLC6 0.91±0.03 2.75±0.93 28.03±10.87 0.80±0.14 3.35±2.28 22.67±12.08
PBLC7 0.91±0.03 2.78±0.94 28.26±10.84 0.80±0.14 3.39±2.26 22.69±12.21

Winner PBLC5 PBLC5 PBLC5 PBLC5 PBLC4 PBLC5
Winner w/o Resampling PBLC4 PBLC4 PBLC4 PBLC4 PBLC4 PBLC3

Table 3: The table shows Dice coe�cients, Mean Surface Distance (MSD) and Hausdor� Distance (HD) for four
standard algorithms and seven variations of the proposed algorithm in our leave-one-out experiments. PBLC
wins the competition with the fastest variant of the proposed algorithm (bottom rows).
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Computation times for a single unseen patient on a Intel Xeon W3530 2.8 GHz workstation using 6 parallel
threads are around one hour for PBLC1 and 2.5 minutes for PBLC4, which is the fastest variant of the algorithm
w.r.t. the used data, see tab. 4.

Organ \ Alg. [min:sec] PBLC1 PBLC2 PBLC3 PBLC4 PBLC5 PBLC6 PBLC7

Liver 50:16 6:38 2:25 1:28 12:52 44:58 242:19
Spleen 14:44 2:32 1:02 0:56 6:34 16:16 79:13

Table 4: Computation times for a label fusion targeting one patient on a Intel Xeon W3530 (6 threads) work-
station in minutes:seconds.

Statistical testing of all results using one-way ANOVA showed no signi�cant di�erences, but there is a clear
tendency to favor the proposed method and thin slice CT data.

4. CONCLUSION

The overall results for the new method underline to follow the proposed direction of research. We can also posit
the bene�t of thin slice CT data for label fusion algorithms in general, which we only have simulated in our
experiment. Of course resampling can not provide the missing details present in �ne resolution data sets.

The most accelerated variant PBLC4 (approximately more than 20 times faster compared to PBLC1) while
supposedly more inaccurate due to using a sparse neighborhood is not inferior to the other competitors. In fact
this algorithm only performs calculations in a slice-wise manner, which is appropriate for highly anisotropic data.
While very sparse, the spatial extension of the neighborhood is highest for this algorithm variant.

Regarding geometry and volume, the size and shape of an organ are important factors for the outcome of
the algorithms. Larger organs tend to have higher Dice coe�cients and lower Mean Surface Distances. The
Hausdor� Distance characterizes outliers which are more likely to occur in complex shaped organs such as the
liver with its lobes, �ssures and apexes.

A closer inspection reveals that high surface distances occur in the �ssures between the lobes of the liver
which are not visible in the rendering and which are generally very di�cult to segment resp. register. Thus
organs with complicated geometric features such as �ssures and lobes are prone to higher Hausdor� distances
while compact organs such as the spleen are typically easier to tackle. The higher errors on the periphery of the
liver might be due to some di�culties the registration algorithms face with aligning the rib cage correctly. We
can see the mark of blurred rib lines in �g. 5c.

Summarizing, we present a new concept for a local patch-based con�dence measure capable to combine
dedicated strong or weak segmentation algorithms with multi-atlas label fusion.

The incorporation of reference gray value image features opens up a new perspective of connecting the worlds
of dedicated segmentation algorithms and multi-atlas based label fusion.4 From the perspective of a �rst study,
here a very weak segmenter is used for reference image feature generation, but in sum with the local con�dence
based fusion approach shows quite promising results in this small scale study with 12 patients.

In future new weak segmentation algorithms could be used. The threshold based weak segmenter used here
could also be easily replaced (1) by stronger segmentation methods or (2) can incorporate more sophisticated
preprocessing algorithms, such as (1) Level-Sets16 or Graph-Cuts17 on one hand and (2) image region homoge-
nizers (e.g. Anisotropic Di�usion18) on the other hand. Another line to follow would be the enlargement of the
study to 20-30 patients to provide more shape variability to the system which should further improve the perfor-
mance. Post-processing of the segmentations might also be of value, registration and fusion artifacts which occur
as spurious voxel groups and spikes could be favorably smoothed out. This might be achieved by a dedicated
segmentation algorithm such as Graph-Cuts17 which could be fed with the obtained results to improve just the
fringe of the segmentation. Because of the averaging nature of the fusion algorithms the major bottleneck is
to capture the �ner shape details as present in the medial and lower apex of the liver, while artifacts from the
registration algorithms such as spikes need to be smoothed away.
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For the proposed method, the trade-o� of the in�uence between the weak segmenter and the warped expert
segmentations is a delicate question. In this implementation the correlation of the experts takes place after the
correlation of one expert with the weak segmentation is done. Finally, they are averaged with the same weight.
In the averaging scheme the system could try to weight the individual correlation results using a performance
measure to give better correlations a higher in�uence in the average (weighted averaging) or automatically sort
out outliers as presented in the SIMPLE method.14

The main problem for the overall system remains the time complexity and quality of the non-linear registra-
tions. For patient individual surgery planning, a system should be capable of delivering a segmentation result
over night. With upcoming GPU-based massive parallel approaches19 accurate pairwise non-linear registration
will soon be a matter of less than ten minutes for a pair of data sets.
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(a) Surface distance for the liver in LP-view (b) Surface distance for the spleen in RA-view

(c) Organ ensemble of liver and spleen in ALI-view

Figure 5: Surface distances for the di�erent organs under study of a patient.
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(a) Liver: Dice coe�cients
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(b) Spleen: Dice coe�cients
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(c) Liver: Mean Surface Distances
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(d) Spleen: Mean Surface Distances
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(e) Liver: Hausdor� Distances
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(f) Spleen: Hausdor� Distances

Figure 4: Bar charts with mean and standard deviation of the evaluation metrics.

Proc. of SPIE Vol. 8669  86691N-10



REFERENCES

1. Oda, M., Nakaoka, T., and Kitasaka, T., �Organ Segmentation from 3D Abdominal CT Images Based on
Atlas Selection and Graph Cut,� Abdominal Imaging 7029, 181�188 (2011).

2. Wolz, R., Chu, C., Misawa, K., Mori, K., and Rueckert, D., �Multi-organ abdominal ct segmentation
using hierarchically weighted subject-speci�c atlases,� Medical Image Computing and Computer-Assisted

Intervention: MICCAI 7510, 10�17 (2012).
3. Suzuki, M., Linguraru, M., and Okada, K., �Multi-organ segmentation with missing organs in abdominal ct

images,� Medical Image Computing and Computer-Assisted Intervention: MICCAI 7512, 418�425 (2012).
4. Asman, A. J. and Landman, B. a., �Simultaneous Segmentation and Statistical Label Fusion,� SPIE Medical

Imaging 2012 8314, 83140Y�83140Y�8 (2012).
5. Agarwal, M., Hendriks, E. a., Stoel, B. C., Bakker, M. E., Reiber, J. H. C., and Staring, M., �Local

SIMPLE Multi-Atlas-based Segmentation Applied to Lung Lobe Detection on Chest CT,� SPIE Medical

Imaging 2012 8314, 831410�831410�7 (2012).
6. Hao, Y., Liu, J., Duan, Y., Zhang, X., Yu, C., Jiang, T., and Fan, Y., �Local Label Learning (L3) for

Multi-Atlas based Segmentation,� SPIE Medical Imaging 2012 8314, 83142E�83142E�8 (2012).
7. Chen, T., Vemuri, B. C., Rangarajan, A., and Eisenschenk, S. J., �Mixture of Segmenters with Discriminative

Spatial Regularization and Sparse Weight Selection.,� Medical Image Computing and Computer-Assisted

Intervention: MICCAI 14, 595�602 (Jan. 2011).
8. Asman, A. J. and Landman, B. A., �Non-local STAPLE : An Intensity-Driven Multi-atlas Rater Model,�

Medical Image Computing and Computer-Assisted Intervention: MICCAI , 426�434 (2012).
9. Schmidt-Richberg, A., Ehrhardt, J., Werner, R., and Handels, H., �Di�eomorphic Di�usion Registration

of Lung Images,� Workshop Proceedings, Medical Image Computing and Computer Assisted Intervention:

MICCAI, 55�62 (Sept. 2010).
10. Ehrhardt, J., Werner, R., Schmidt-Richberg, A., and Handels, H., �Statistical Modeling of 4D Respiratory

Lung Motion Using Di�eomorphic Image Registration.,� IEEE Transactions on Medical Imaging 30, 251�65
(Feb. 2011).

11. Kittler, J. and F.M. Alkoot, �Sum versus Vote Fusion in Multiple Classi�er Systems,� IEEE Transactions

on Pattern Analysis and Machine Intelligence on Pattern Analysis and Machine Intelligence 25(1), 110�115
(2003).

12. Rohl�ng, T., Russako�, D. B., and Maurer, C. R., �Performance-based Classi�er Combination in Atlas-
based Image Segmentation using Expectation-Maximization Parameter Estimation.,� IEEE Transactions

on Medical Imaging 23, 983�94 (Aug. 2004).
13. War�eld, S. K., Zou, K. H., and Wells, W. M., �Simultaneous Truth and Performance Level Estimation

(STAPLE): an Algorithm for the Validation of Image Segmentation.,� IEEE Transactions on Medical Imag-

ing 23, 903�21 (July 2004).
14. Langerak, T. R., van der Heide, U. a., Kotte, A. N. T. J., Viergever, M. a., van Vulpen, M., and Pluim, J.

P. W., �Label Fusion in Atlas-based Segmentation using a Selective and Iterative Method for Performance
Level Estimation (SIMPLE).,� IEEE Transactions on Medical Imaging 29, 2000�8 (Dec. 2010).

15. Coupé, P., Manjón, J. V., Fonov, V., Pruessner, J., Robles, M., and Collins, D. L., �Patch-based Segmen-
tation using Expert Priors: Application to Hippocampus and Ventricle Segmentation.,� NeuroImage 54,
940�54 (Jan. 2011).

16. Osher, S. and Sethian, J. A., �Fronts propagating with curvature-dependent speed: Algorithms based on
hamilton-jacobi formulations,� Journal of Computational Physics 79(1), 12�49 (1988).

17. Boykov, Y. and Kolmogorov, V., �An Experimental Comparison of Min-cut/Max-�ow Algorithms for Energy
Minimization in Vision.,� IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1124�37
(Sept. 2004).

18. Perona, P. and Malik, J., �Scale-space and edge detection using anisotropic di�usion,� IEEE Transactions

on Pattern Analysis and Machine Intelligence 12(7), 629�639 (1990).
19. Modat, M., Ridgway, G. R., Taylor, Z. a., Lehmann, M., Barnes, J., Hawkes, D. J., Fox, N. C., and Ourselin,

S., �Fast Free-form Deformation using Graphics Processing Units.,� Computer Methods and Programs in

Biomedicine 98, 278�84 (June 2010).

Proc. of SPIE Vol. 8669  86691N-11


	SPIE Proceedings
	MAIN MENU
	Contents
	Search
	Close


