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ABSTRACT

Respiratory motion is a major source of error in radiation treatment of thoracic and abdominal tumors. State-
of-the-art motion-adaptive radiation therapy techniques are usually guided by external breathing signals acting
as surrogates for the internal motion of organs and tumors. Assuming a relationship between the surrogate
measurements and the internal motion patterns, which are usually described by non-linear transformations,
correspondence models can be defined and used for surrogate-based motion estimation. In this contribution,
a diffeomorphic motion estimation framework based on standard multivariate linear regression is extended by
subspace-based approaches like principal component analysis, partial least squares, and canonical correlation
analysis. These methods aim at exploiting the hidden structure of the training data to improve the use of
the information provided by high-dimensional surrogate and internal motion representations. A quantitative
evaluation carried out on 4D CT data sets of 10 lung tumor patients shows that subspace-based approaches
are able to significantly improve the mean estimation accuracy when compared to standard multivariate linear
regression.
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1. INTRODUCTION

Breathing-induced location uncertainties of target structures and associated organs at risk (OARs) are a major
problem in radiation therapy (RT) of thoracic and abdominal tumors. Therefore, patient-specific information
about breathing motion should be used during treatment planning and delivery to increase the precision of
dose delivery. While 4D(=3D+t) CT data sets acquired for RT planning purposes provide insights into the
breathing dynamics of the individual patient, they can not be used to steer motion-adaptive treatment approaches
(respiratory gating or tumor tracking) in real-time. These advanced techniques are usually guided by an external
breathing signal of a so-called surrogate (abdominal belt, spirometry, etc.), which can be easily acquired.1,2

Assuming a relationship between the time-dependent surrogate signal and the respiratory motion of internal
structures, mathematical correspondence models can be defined, trained, and eventually be used to estimate the
position of tumors and OARs given a surrogate measurement.3 Due to the complex (three-dimensional) nature
of internal motion and additional effects like, e.g., phase shifts and inter-cycle variations, the usage of simple one-
dimensional signals (abdominal belt, spirometry, etc.) seems to be inadequate and motivates the introduction
of multi-dimensional surrogates. Modern range imaging devices like Time-of-Flight (ToF) and structured light
cameras provide an easy and contact-less way to monitor the lifting/raising of the chest wall in real-time without
the use of artifical markers.4 The acquired range images of the patient’s skin surface can be seen as a multi-
dimensional respiratory signal. In order to take advantage of such a high-dimensional surrogate signal and given
the complex internal motion patterns, usually represented by non-linear transformations, adequate multivariate
correspondence models have to be defined and evaluated.
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We have recently presented a diffeomorphic framework for surrogate-based motion estimation based on mul-
tivariate (multiple) linear regression (MLR).5 Given a 4D CT image sequence, a patient-specific relation between
corresponding surrogate measurements and internal motion patterns represented by previously estimated dif-
feomorphic non-linear transformations6 can be trained. The advantage of restricting the transformations to
diffeomorphisms is that they ensure the topology of the objects to be preserved, making them a natural choice
for the intended application.7 Furthermore, statistics on diffeomorphisms can be efficiently calculated within the
Log-Euclidean framework proposed by Arsigny et al.8

Although the proposed MLR-based estimation approach can, in principle, be used with surrogate and internal
motion signals of any dimensions, computational problems (multi-collinearities, etc.) frequently arise in practice
due to the large amount of partially redundant data to be processed for high-dimensional surrogate and motion
representations. With this in mind, this work focuses on the use of different subspace methods [principal
components analysis (PCA), partial least squares (PLS), and canonical correlation analysis (CCA)] to tackle
these problems. PCA has been utilized by several authors to develop correspondence models. For example, King
et al.9 and Zhang et al.10 applied PCA to the motion data to obtain a low-dimensional parameterization of the
complex lung motion. Furthermore, PCA has been applied to the surrogate data by Klinder et al.11 in order to
reduce multi-collinearities. Another option could be to combine both approaches by performing a PCA-based
dimensionality reduction on both the motion and surrogate data separately before relating the PCA weights by
an ordinary linear model. While this would result in compact correspondence models, a separate treatment of
motion and surrogate data does not take their relationship into account. Therefore, some authors recommend
the use of more elaborated methods like PLS12 and CCA13,14 to optimize the estimation accuracy. What has
been missing so far is a comparison of all these subspace approaches. For that reason, this work aims to present
them in a consistent way and to provide an extensive evaluation of the performance of these methods within
our novel diffeomorphic motion estimation framework. Furthermore, we also investigate the influence of the
dimensionality of the surrogate signal on the estimation accuracy.

2. METHODS

2.1 Diffeomorphic Framework for Surrogate-based Motion Estimation

In the following, let (Ij)j∈{1,...,nph} denote a 4D CT data set consisting of nph 3D images Ij : Ω → R (Ω ⊂
R3), representing the patient’s anatomy at states j of a breathing cycle. Furthermore, we assume a set of
corresponding, synchronously acquired or retrospectively simulated nsur-dimensional surrogate measurements
(ζj)j∈{1,...,nph}, with ζj ∈ Rnsur , to be given. Being interested in a diffeomorphic regression framework, the
complex motion of internal structures between a reference breathing state I1 and Ij is described by the non-
linear transformation ϕj = id + uj : Ω → Ω parameterized by a stationary velocity field vj by ϕj = exp(vj). It
is estimated using a diffeomorphic registration scheme, which has been proven to be accurate for registration of
lung CT images.6

From now on, we interpret the corresponding velocity fields vj and surrogate measurements ζj as random
variables Vj ∈ R3m (m is the number of image voxels) and Zj ≡ ζj , respectively. Furthermore, let V :=
(Vc

1, . . . ,V
c
nph

) and Z := (Zc
1, . . . ,Z

c
nph

) denote matrices consisting of the mean centered random variables

Vc
j = Vj − V and Zc

j = Zj − Z, which serve as training data for the estimation of the (supposed) linear
relationship

V̂ = V + B(Ẑ− Z) (1)

between a surrogate signal observation Ẑ ≡ ζ̂ (regressors) and the corresponding velocity field V̂ (regressands).
Performing multivariate linear regression, an ordinary least squares (OLS) estimation of the regression coefficient
matrix B is given by

BOLS = arg min
B′

tr
[
(V −B′Z)(V −B′Z)T

]
= VZT (ZZT )−1 = ΣVZΣZZ

−1, (2)

with ΣZZ being the covariance matrix of the surrogate signal observations Z and ΣVZ denoting the cross-
covariance matrix of V and Z.5,15 However, when dealing with high-dimensional surrogate signals, ΣZZ will usu-
ally be (nearly) rank deficient due to the linear relations of the different signal dimensions (multi-collinearities).
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A common way to circumvent the possible non-invertibility is to approximate ΣZZ by ΣZZ + γI, known as
Tikhonov regularization. While this approach works well, the choice of the regularization parameter γ > 0 is
rather heuristic and, in case of high-dimensional surrogate signals, inverting a large size matrix ΣZZ +γI remains
computationally prohibitive. This motivates the usage of dimensionality reduction approaches, which can for
example be used to project the data to a subspace, where the regressor covariance matrix can be easily inverted.

2.1.1 Regression based on Principal Component Analysis (PCA)

A classical approach for redundancy elimination is the principal component analysis (PCA).16 First, a singular
value decomposition (SVD) Z = UDWT is performed, where U and V are unitary matrices of left- and right-
singular vectors of Z, respectively, and D denotes a diagonal matrix with the corresponding singular values as
its diagonal elements. Then, retaining only the first nc left-singular vectors with positive singular values leads
to a basis Unc

of maximum data variation. Based on the approximation ΣZZ ≈ Unc
(DT

nc
Dnc

)UT
nc

, principal
component regression (PCR)11,16 coefficients are given by

BPCR = ΣVZUnc
(DT

nc
Dnc

)−1UT
nc
, (3)

where only the diagonal matrix DT
nc

Dnc
has to be inverted. The projection to a subspace of maximum data

variation can also be done for the data matrix V. In this case, the dimensionality reduction using the new
basis Pnc is mainly intended to remove noise and minor consistency errors from the velocity fields, resulting in
compact representations of the internal motion.10,17 Now, rephrasing of (2) gives

BPCA = Pnc
(PT

nc
ΣVZΣZZ

−1). (4)

Using the new basis Pnc
to project the motion data does not influence the rank of ΣZZ, so we still have to

account for the multi-collinearity problem mentioned above. Here, we again approximate ΣZZ by ΣZZ + γI. As
an alternative, it would also be possible to combine BPCA and BPCR to perform dimensionality reduction of
both the velocity fields and the surrogate data.14

2.1.2 Regression based on Partial Least Squares (PLS)

A major problem of PCA-based regression approaches is that the PCA is usually performed on the input
and/or output data separately. In contrast, partial least squares (PLS) searches for orthonormal bases Unc

:=
(u1, . . . ,unc

) and Pnc
:= (p1, . . . ,pnc

) consisting of pairs ui and pi that maximize the cross-covariance ρi =
uT
i ΣZVpi. It can be shown18 that the directions sought are solutions of the eigenvector problem{

ΣZVΣVZui = ρ2ui

ΣVZΣZVpi = ρ2pi.
(5)

Finally, for defining the regression coefficients the new basis Unc
is used:

BPLS = ΣVZUnc
(UT

nc
ΣZZUnc

)−1UT
nc
. (6)

For calculating equation the eigenvectors and eigenvalues of (5) we use the non-linear iterative partial least
squares algorithm (NIPALS), which is able to handle large matrices V and Z.19

2.1.3 Regression based on Canonical Correlation Analysis (CCA)

Another way of taking into account the structure of the velocity fields and the surrogate signal is to perform a
canonical correlation analysis (CCA). CCA aims at finding directions ui and pi that maximize the correlation

ρi =
uT

i ΣZVpi√
uT

i ΣZZuipT
i ΣVVpi

of the projected data. ui and pi can be retrieved by solving the eigenvalue problem:18{
ΣZZ

−1ΣZVΣVV
−1ΣVZui = ρ2ui

ΣVV
−1ΣVZΣZZ

−1ΣZVpi = ρ2pi.
(7)

Here we encounter the same problem as in (2): The inverse of covariance matrix ΣZZ (and ΣVV) has to be
calculated. We deal with this problem by reducing the dimensionality of Z (and V) by performing a PCA first.13

Having determined a new basis Unc
, matrix BCCA is defined in the same way as BPLS in (6):

BCCA = ΣVZUnc(UT
nc

ΣZZUnc)−1UT
nc
. (8)
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Table 1. Landmark-based target registration errors, obtained for the surrogate-based estimation of inner lung motion as
part of the leave-out tests, listed for the different regression approaches and the two high-dimensional surrogates (sampled
skin surface: 100 points, All points), given as mean±standard deviation for the ten patients considered.

Landmark-based Target-Registration-Error [mm]

EI → EE EI → MI EI → ME
Motion Estimation 100 points/All points 100 points/All points 100 points/All points

No motion estimation 6.80± 1.80 4.88± 1.20 2.50± 0.60
Intra-patient registration 1.37± 0.16 1.57± 0.14 1.50± 0.17

Diffeomorphic estimation framework; regression coefficients = . . .

BOLS 1.89± 0.32/− 1.85± 0.34/− 1.82± 0.20/−
BPCA 1.79± 0.32/− 1.80± 0.32/− 1.75± 0.21/−
BPCR 1.79± 0.23/1.79± 0.23 1.80± 0.29/1.83± 0.23 1.70± 0.21/1.67± 0.19
BPLS 1.79± 0.23/1.74± 0.22 1.79± 0.29/1.77± 0.25 1.61± 0.14/1.65± 0.16
BCCA 1.82± 0.35/1.71± 0.25 1.82± 0.32/1.79± 0.21 1.71± 0.23/1.67± 0.21

2.2 Experiments

An evaluation of the different regression approaches was carried out on 4D CT data sets of 10 lung tumor
patients (10-14 states, avg. spatial resolution 512×512×272 voxel and spacing 1×1×1.5 mm). Due to the lack
of real data for the patients considered, a simulated multi-dimensional surrogate signal had to be used. For this
purpose, a range image-based tracking of the raising/lifting of the chest wall was implemented using the patient’s
4D CT data sets. Assuming a range imaging sensor positioned above the patient’s chest, rays originating from
nsur points across the sensor plane are traced in anterior-posterior direction until they intersect with the chest
wall. The air-to-soft tissue intersection is detected with subvoxel accuracy by using linear interpolation and a
heuristically chosen threshold of −500 HU. Two different spatial samplings of the chest wall area were simulated:
(1) nsur = 100 equally spread points across a rectangular, patient-specific region of interest (ROI), and (2) all
ROI points (nsur = 38000 on average).

Using the state at end-inspiration (EI) as a reference, leave-out tests for all regression approaches and patients
were performed to assess the surrogate-based motion estimation accuracy between EI and the left-out states of
end-expiration (EE), mid-inspiration (MI), and mid-expiration (ME). Estimation of the motion between EI and
EE is used to evaluate the extrapolation performance based on surrogate measurements not included in the
training signal interval, whereas the other two cases are useful for analyzing the interpolation capabilities. The
estimation accuracy was evaluated by computing a target registration error using manually defined landmark
correspondences (70 landmarks per patient and breathing state). For this work, the number of components nc
used for each patient/experiment was optimized with respect to this registration error. A suitable weighting
parameter γ for the Tikhonov regularization was chosen heuristically based on the condition number of the
matrix to be inverted.

3. RESULTS

The results of the leave-out experiments are summarized in Table 1 and Figure 1. Results for BOLS and BPCA

are only available for the 100 point skin surface sampling due to the high computational costs of calculating
ΣZZ

−1 in (2) and (4). On the one hand, Table 1 shows that using subspace methods leads to improved mean
estimation accuracy compared to results obtained by standard OLS regression (BOLS). However, only the
accuracy improvements for BPCA are statistically significant (paired t-test, p < 0.05) for all three experiments
(EE: p = 0.006, MI: p = 0.001, ME: p = 0.002). The differences between the various subspace methods are
not significant (see Figure 1(a)), which suggests that using more elaborated methods like PLS and CCA instead
of PCA/PCR might not be necessary in general. Our results also suggest that (on average) increasing the
number of sampling points does not significantly improve the estimation accuracy (e.g. BCCA/EE: 1.82 ± 0.35
vs. 1.71± 0.25, p = 0.26). But there are differences between the patients included in our study. As an example,
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(a)

100 points All points

(b)

Figure 1. Results of the surrogate-based estimation of lung motion fields between EI and EE for all patients. The dashed
lines denote the mean values from Table 1 and 2. (a) Visualization of the landmark-based target registration errors (TRE)
for the different regression approaches and the two high-dimensional surrogates (sampled skin surface: 100 points, All
points). The asterisks indicate statistically significant differences (paired t-test, p < 0.05). *: p = 0.046, **: p = 0.006.
(b) Optimized number of modes used for each subspace regression approach to obtain the lung motion fields between EI
and EE.

Table 2. Number of modes used for each subspace regression approach to obtain the results reported in Table 1. Number
of modes were optimized with respect to the TRE and the results are given as mean±standard deviation for the ten
patients considered.

Number of modes used

EI → EE EI → MI EI → ME
Subspace approach 100 points/All points 100 points/All points 100 points/All points

BPCA 5.40± 2.84/− 4.90± 3.32/− 4.20± 3.46/−
BPCR 4.90± 3.57/4.30± 2.63 7.50± 3.98/8.50± 3.89 7.50± 3.98/5.00± 2.49
BPLS 5.40± 3.63/4.80± 2.90 5.30± 3.47/5.60± 1.84 4.80± 3.36/4.40± 2.84
BCCA 7.60± 1.84/8.20± 1.69 8.60± 2.84/8.90± 2.34 8.50± 1.84/9.30± 2.16

for patient 01 (Figure 2) using only 100 chest points leads to a visible underestimation of the motion amplitude
for the surrogate-based results compared to the displacement field estimated with our intra-patient registration
algorithm. In this case, increasing the number of sampling points clearly reduces the underestimation. In
contrast, for the motion fields of patient 05 shown in Figure 3, no major differences between the use of different
approaches and surface samplings are observable. As the results in Table 2 and Figure 1 (b) show, the optimal
number of components used differs for different patients, approaches, and/or test cases. For example, on average
five components were used for calculating BPCR (EI → EE case with 100 surface points), with a maximum of
10 components and a minimum of 1 component.

4. CONCLUSIONS

External breathing signals (surrogates of internal motion patterns) are utilized to guide modern RT techniques.
Following the trend toward multi-dimensional surrogates, we extended our diffeomorphic standard MLR-based
estimation framework by incorporating state-of-the-art subspace-based regression methods, which aim at exploit-
ing the hidden structure of the training data to improve the use of information provided by high-dimensional
surrogate and internal motion representations.

Our results show that, in general, subspace-based approaches have the potential to significantly improve
the estimation accuracy when compared to standard OLS regression. However, based on our results, it is hard
to choose one subspace approach with a certain configuration (number of components, surface sampling, . . . )
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that would work equally well for all patients. Therefore, future work will include a further investigation of the
number of components needed for each approach. The goal should be to define automatic selection criteria like
percentage of explained variability for PCA-based approaches, because an optimization with respect to the TRE
using manually determined landmarks, as done for this study, is not feasible in clinical practice. We also plan
to extend our evaluation to include an investigation of the motion estimation accuracy in the presence of intra-
and inter-cycle motion variability and the use of real range imaging data instead of image-based simulations.
Furthermore, we only have discussed the primal forms of the different regression approaches so far, but all of
them can be expressed solely in terms of inner products resulting in a dual version.20 Then, the well-known
kernel trick can be utilized to perform non-linear regression.21
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(a) Intra-patient registration
TRE: 1.20 mm

(b) OLS 100 points
TRE: 2.39 mm

(c) PCA 100 points
TRE: 2.21 mm

(d) PCR 100 points
TRE: 1.89 mm

(e) PLS 100 pointsTRE: 1.92 mm (f) CCA 100 points
TRE: 2.43 mm

(g) PCR 42000 points
TRE: 1.53 mm

(h) PLS 42000 points
TRE: 1.52 mm

(i) CCA 42000 points
TRE: 1.53 mm

Figure 2. Visualization of the lung motion between EI and EE of patient 01 estimated with intra-patient registration (a)
and the different regression approaches/surface samplings (b)–(i).
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(a) Intra-patient registration
TRE: 1.33 mm

(b) OLS 100 points
TRE: 1.69 mm

(c) PCA 100 points
TRE: 1.66 mm

(d) PCR 100 points
TRE: 1.64 mm

(e) PLS 100 pointsTRE: 1.64 mm (f) CCA 100 points
TRE: 1.66 mm

(g) PCR 32200 points
TRE: 1.65 mm

(h) PLS 32200 points
TRE: 1.64 mm

(i) CCA 32200 points
TRE: 1.62 mm

Figure 3. Visualization of the lung motion between EI and EE of patient 05 estimated with intra-patient registration (a)
and the different regression approaches/surface samplings (b)–(i).
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