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ABSTRACT

4D imaging becomes increasingly important in clinical practice. Its use in diagnostics and therapy planning
usually requires the application of non-linear registration techniques. The reliability of information derived from
the computed transformations is directly dependent on the registration accuracy. Ideally, this accuracy should be
evaluated on a patient- and data-specific level – which requires appropriate evaluation criteria and procedures.
A standard approach for evaluation of non-linear registration accuracy is to compute a landmark- or point-
based registration error by means of manually detected landmark correspondences in the images to register,
with the landmarks being anatomically characteristic points. Manual detection of such points is, however, time-
consuming and error-prone. In this contribution, different operators for automatic landmark detection and a
block matching strategy for landmark propagation in 4D image sequences (here: 4D lung CT, 4D liver MRT) are
proposed and evaluated. It turns out that the so-called Förstner-Rohr operators perform best for detection of
anatomically characteristic points and that the proposed propagation strategy ensures a robust transfer of these
landmarks between the images. The automatically detected landmark correspondences are then used to evaluate
the accuracy of different registration approaches (in total 48 variants) applied for registering 4D lung CT data.
The resulting registration error values are compared to errors obtained by manually detected landmark pairs. It
is shown that derived statements concerning differences in accuracy of the registration approaches are identical
for both the manually and the automatically detected landmark sets.
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1. PURPOSE

4D imaging becomes increasingly important in clinical practice, for instance in radiation therapy when managing
respiratory motion.1,2 For this clinical scenario, a 4D image sequence is usually considered to be a series of
3D images representing the patients’ anatomy at different breathing states. During treatment planning, the
temporal image information is then used for dimensioning safety margins and analyzing motion effects on dose
distributions by taking into account the patients’ respiratory motion patterns. Such steps require the use of non-
linear registration for estimation of the motion fields between the 3D (spatial) images of the 4D image sequence,
which eventually form the basis of, e. g., 4D contouring3,4 and dose accumulation techniques.5–7

It is obvious that the reliability of extracted information – in this case safety margins and 4D dose distributions
– is directly tied to the accuracy of the registration applied;8 therefore, an accuracy assessment of the registration
is indispensable, ideally performed on a patient- and data-specific level. This, however, is difficult because usually
no ground truth deformations are known that could be compared with the registration results.9 As a widely used
and accepted approach to solving this problem, a landmark- or point-based registration error, often also referred
to as target registration error (TRE), is computed and considered as quantitative evaluation criterion,8,10–13

with the landmarks being anatomically characteristic points in the images to be registered (e. g. bifurcations of
vessel trees of organs of interest).
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Such points are mostly manually identified, but this results in a time-consuming and error-prone process
concerning variability/reproducibility of exact point selection,12 and therefore efforts have been made to (par-
tially) automate the identification of appropriate landmark sets. Important steps toward automatic landmark
correspondence detection for evaluation of non-linear registration have been taken, e. g., by Murphy et al.,9,14

exploiting earlier ideas of Likar and Pernus15 for constructing a semi-automatic reference standard. However,
the use of an entirely automatic technique for defining landmark correspondences for quantitative evaluation of
non-linear registration is still discussed controversially.11 Placed in this context, the contribution of this paper
is twofold: First, we discuss and evaluate the use of different operators and approaches for automatic landmark
detection in 3D lung CT and 3D liver MRT images, which could be used for either a semi-automatic or an
automatic reference standard construction. Aiming at an entirely automatic approach, we then apply a block
matching strategy for propagating the detected landmarks between images to be registered. As the second
part of the contribution, automatically established landmark correspondences are used to evaluate the accuracy
of different non-linear intensity-based registration approaches when applied for registering 4D lung CT data.
Derived results/statements regarding differences in accuracy of the registration approaches are compared with
corresponding numbers obtained by applying manually detected landmark sets for evaluation purposes.

2. METHODS

According to the main contributions of the paper, this section is structured as follows: In Sec. 2.1, the operators
considered for landmark detection are defined (Sec. 2.1.1), and the block matching strategy used for propagating
the landmarks between the images to be registered is explained (Sec. 2.1.2); the data sets and the strategy used
for evaluation of the landmark detection and propagation are detailed in Sec. 2.1.3. The registration approaches
applied for registering the 4D lung CT data and the strategy applied for comparison of the landmark-based
registration errors based on automatically detected (TRE-a) and manually detected landmarks (TRE-m) are
finally described in Sec. 2.2.

2.1 Automatic definition of landmark correspondences

2.1.1 Operators applied for landmark detection

Within the widely used approach for semi-automatic landmark-based reference standard construction of Murphy
et al.,9,14 automatic landmark detection is based on a so-called distinctiveness term that is assumed to be high
for voxels representing anatomically characteristic points. The distinctiveness term consists of two multiplicative
parts: A normalized feature-based term and a dissimilarity term of the intensity values of a local neighborhood
of voxels around the voxel considered and the neighborhood of the voxel itself. Let IR : Ω ⊂ R3 → R denote
the image considered for landmark detection and ∇IR : Ω → R3 the corresponding gradient image; then, the
proposed distinctiveness term of a voxel x ∈ Ω reads as14

D (x) =


0 if ‖∇I (x)‖ < θ‖∇I(x)‖

‖∇I (x)‖
maxx′∈Ω ‖∇I (x′)‖︸ ︷︷ ︸

feature-based term

·

intensity-based dissimilarity term︷ ︸︸ ︷∑
i

MSD (I (N (x)) , I (N (xi))) else

with the xi ∈ Ω being voxels in the proximity of x (here: on a surface of a sphere centered in x) and N (x)
denoting a neighborhood of x (here: a sphere around x); the MSD term refers to the mean squared intensity
differences of the voxels in N (x) and N (xi).

In the above definition, the image gradient magnitude is considered as the relevant image feature character-
izing appropriate landmark candidates. However, potential anatomically characteristic points like bifurcations
of, e. g., the vessel trees of lung and/or liver or the bronchial tree inside the lung feature specific curvature
characteristics.16 Reviving earlier works on landmark detection,17,18 we suggested the so-called (3D-)Förstner
operator instead.19,20 In this paper, we extend our previous studies by evaluating and comparing the landmark
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detection performance of the different Förstner-Rohr-type operators; the image gradient magnitude serves as the
standard of comparison. Retaining the notation of Hartkens et al.,17 these operators are defined as

Op3 =
det C̄IR
tr C̄IR

, (1)

Rohr3D = det C̄IR , (2)

Förstner3D =
det C̄IR

tr C̄adj
IR

(3)

with C̄IR : Ω→ R3×3 as a smoothed version of the structure tensor∇IR∇ITR , computed by C̄IR = Kρ∗
(
∇IR∇ITR

)
with Kρ being a Gaussian kernel with standard deviation ρ. To further suppress unintended high answers of the
Förstner-Rohr-type operators at non-characteristic points, we additionally apply the operator

OpR =

∏
i λi(

1
3

∑
i λi
)3 (4)

(λi: eigenvalues of C̄IR) in the sense of a rejection operator as originally proposed by Rohr,18 i.e. we only
consider answers of the operators (1)-(3) as denoting appropriate landmark candidates if the OpR values of the
corresponding voxels lie above a pre-defined threshold. This allows, e.g., to avoid detection of points on edges
(i.e. one eigenvalue λi ≈ 0).

For landmark detection, the Förstner-Rohr-type operators (filtered by OpR) and the image gradient magni-
tude ‖IR‖ are evaluated in a specific region of interest (ROI) of IR. Suitable landmark candidates are selected
based on the values of the operator answers (high values = suitable candidates), starting with highest value as
the first landmark candidate. Additional landmark candidates are added analogously to the candidate set, but
a minimum Euclidean distance is postulated to be kept between the candidates to be selected9,14 to provide
an approximately equal distribution of the landmarks in the ROI as required for application to registration
evaluation.11

2.1.2 Landmark propagation between images

After detecting a set LR of landmarks in the image IR, which is subsequently assumed to be one of the 3D frames
of a 4D image sequence, the corresponding landmark sets LTi

of the other images ITi
: Ω → R of the image

sequence (i = 1, . . . , N : breathing phases represented by the 3D images) are identified by a cross correlation
(CC)-based block matching strategy detailed in Werner et al.20 and Ehrhardt et al.19 Let IT be a particular
image to transfer LR to, two block matching runs are performed: a block matching using the original intensity
information of IR and IT , and a block matching based on the answers of the specific operator applied for the
original landmark detection in IR. The results of both runs are evaluated and combined to improve robustness of
landmark propagation: The propagation of a landmark candidate in LR is only accepted if the estimated target
landmark positions of both block matching runs agree and if the correlation coefficient of the intensity values
in a local neighborhood of the landmark positions in IR and IT is larger than a pre-defined correlation value;
otherwise, the landmark propagation is rated as not reliable and the landmark candidate is not considered for
subsequent evaluation purposes.

2.1.3 Data sets and experiments

For evaluation of the detection performance of the operators when applied to lung CT data, we used the POPI
phantom21 (image resolution: 0.98×0.98×2 mm3; mid-inspiration phase), one data set of the DIR-Lab data
pool11 (0.97×0.97×2.5 mm3; mid-inspiration phase), and two diagnostic lung CT images of high spatial resolu-
tion (0.76×0.76×0.7 mm3) of our own fund. Within each image and for each operator, 50 inner lung landmarks
were automatically detected. The operator performance was then evaluated independently by three observers by
classifying the individual landmarks into the categories “definitely / potentially / not an anatomically character-
istic point”. A similar evaluation strategy has been used for landmark detection in a mid-inspiration liver MRT
data set22 with the liver as ROI, but only 20 landmarks were identified in this case due to low image resolution
and size (1.37×1.37×4 mm3 / 166×195×25 voxel).
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For the POPI- and DIR-lab data, the landmarks detected by the different operators were then propagated to
the corresponding end-inspiration phase and the propagation was evaluated visually on a landmark-by-landmark
basis (“propagation successful / not successful”).

2.2 Comparison of TRE-a and TRE-m as evaluation criteria: study design

With the optimal operator (according to the results of the experiments of Sec. 2.1.3) as the basis of the auto-
matic landmark detection (here: the feature-based term of the distinctiveness value computation according to
Murphy et al.9,14), we performed an in-depth comparison of the TRE-a and the TRE-m as evaluation criteria
for registration in 4D lung CT data. Therefore, end-inspiration and end-expiration data of in total 23 4D CT
data sets were registered (POPI, 10 DIR-Lab data sets, 12 4D CT sequences of our own fund) using different
variants of a variational registration scheme. The POPI and the DIR-lab data come along with their own set of
manually detected landmark correspondences, provided through the respective platforms. For our own data sets
we identified 70 landmark pairs manually for each 4D image sequence to calculate the TRE-m values. For com-
putation of the TRE-a values, we used approx. 150 automatically detected landmarks per data set (detected in
the end-inspiration image, then propagated to the end-expiration image). TRE-a and TRE-m values obtained by
the different registration variants were compared considering corresponding results for the individual registration
approaches; statistical significance of differences between TRE-a and TRE-m values for particular approaches
was tested by a paired t-test on the patient-specific mean TRE-m and TRE-a values (mean over all landmarks
for the individual patient/4D CT data set).

The variational framework used for registration of two CT frames IR (reference image) and IT (target image)
reads as,

J [ϕ] = D[R, T, ϕ] + αS[ϕ]
ϕ→ min, (5)

with the transformation ϕ : Ω → Ω being sought in such a way that it minimizes a dissimilarity measure
D : Img (Ω) × Img (Ω) × C2 (Ω,Ω) → R+

0 between IR and (IT ◦ ϕ), but still features a desired smoothness as
specified by the regularization term S : C2 (Ω,Ω) → R+

0 ; Img (Ω) denotes the set of all images with domain Ω.
For this study, we applied the following building blocks of (5):

• Transformation space: We considered both an optimization over all standard C2-fields (see, e.g., Werner
et al.13) and a minimization with the transformations ϕ being restricted to diffeomorphisms parameterized
by stationary velocity fields (see Schmidt-Richberg et al.23 for details). Corresponding registration schemes
are subsequently denoted as standard and diffeomorphic registration schemes.

• Distance measure / related force term: As distance measures we applied the standard sum-of-squared
intensity-differences measure (SSD) and three variants of Thirion-type terms – active, passive, dual terms;
depending on the force domain considered; for details see, e. g., Schmidt-Richberg et al.24 All variants are
evaluated in both a masked and an unmasked manner (i. e. evaluation of intensity differences/forces only
inside the lung vs. for the entire image domain). We further considered a symmetrization of force com-
putation, i. e. the evaluation of Dsym[R, T, ϕ] = 1/2

(
D[R, T, ϕ] +D[T,R, ϕ−1]

)
instead of only D[R, T, ϕ].

This, however, requires an efficient computation of the inverse transformation ϕ−1 – which is an advantage
of the applied diffeomorphic registration scheme. We therefore evaluated the symmetrization of the force
computation only within the diffeomorphic registration scheme and refer to the corresponding registration
methods as symmetric-diffeomorphic registration scheme.

• Regularization terms: For regularization we applied a diffusion and a linear-elastic smoothing term.25

Thus, in total, 48 variants of (5) were considered for evaluation and comparison of the TRE-m and TRE-a values
[(standard, diffeomorphic, symmetric-diffeomorphic)×(SSD-, 3×Thirion-type forces)×(masked/unmasked force
computation)×(diffusion/elastic regularization)].
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(a) POPI phantom, sagittal view (b) Example of an “anatomically
characteristic point” in the lung

(c) Landmark candidates, detected by
the Op3 operator

Figure 1. Example of an anatomically characteristic point (middle) and illustration of inner lung landmark candidates
detected by the Op3 operator within the POPI phantom (right figure; landmark candidates = centers of the blue areas;
figures in color in electronic version).

(a) Sagittal view of a liver MRT data set (b) Operator answer, filtered by
the OpR operator

(c) Positions of the landmarks finally
detected

Figure 2. Illustration of landmark detection (here: Op3 as detection operator) in a liver MRT data set (final landmarks
= centers of the blue areas in the right figure; figures in color only in electronic version).

3. RESULTS

3.1 Comparison of operators used for landmark detection

An example of a landmark rated as an “anatomically characteristic point” of the lung can be found in Fig. 1;
the areas of appropriate landmark candidates as detected using the operator Op3 are also visualized. It can
be seen that the landmarks detected in lung CT data are mainly bifurcations of the bronchial tree – and
therefore represent a natural choice of anatomically characteristic points. This also holds for the operators
Rohr3D and Förstner3D ; in total 84±10% of the lung points detected by these operators were rated as be-
ing “definitely anatomically characteristic” by the three observers (“potentially anatomically characteristic”:
10±7%/12±10%/10±7% for Op3 /Rohr3D/Föerstner3D ; “not anatomically characteristic”: 6±4%/5±3%/6±5%).
In constrast, only 50±8% (29±8%; 21±6%) of the points were classified as “definitely (potentially; not) anatom-
ically characteristic” if using the intensity magnitude as detection operator.

Similar statements hold for the landmark detection in the liver MRT data set (cf. Fig. 2), but with a lower

Proc. of SPIE Vol. 8669  86690Z-5



number of detected points featuring obvious anatomical characteristics. Interestingly, for this data set the 20
landmarks detected by the Förstner-Rohr-type operators were identical, with the fraction of points rated as
“definitely anatomically characteristic” being 73±10% (“potentially anatomically characteristic”: 25±13%; “not
anatomically characteristic”: 2±3%); in contrast, the detection by the image gradient magnitude resulted in a
fraction of only 35±13% points being considered as definitely anatomically characteristic.

Thus, no obvious differences are observed between the different Förstner-Rohr-type operators when applied
for landmark detection, but all operators (1)-(3) yield superior results when compared to the image gradient mag-
nitude as detection operator. For the subsequent comparison of TRE-m and TRE-a values we therefore applied
the Op3 operator for landmark detection (here: for computation of the feature-based term of a distinctiveness
value according to Murphy et al.; cf. Sec. 2.1.1).

3.2 Evaluation of the landmark propagation

Similar to our earlier studies,20 the propagation of the detected landmarks by the proposed block matching
strategy turned out to be very robust; when using the consistency checks as described in Sec. 2.1.2 and a correla-
tion coefficient threshold of 0.9, all automatically established landmark correspondences were evaluated as being
successful. However, high thresholds led to a rejection of a larger number of detected landmark candidates, and
so – in order to obtain a final landmark set of fair size and almost equal distribution in the ROI – the correlation
threshold was decreased to 0.8 for subsequent experiments, accepting that some landmark correspondences used
for calculation of the TRE-a were established erroneously.

3.3 Comparison of TRE-a and TRE-m

The TRE-m and TRE-a values (Op3 as basis of automatic landmark detection; cf. Sec. 3.1) as obtained for
the different variants of the registration scheme (5) are summarized in Tab. 1. No significant differences were
observed between TRE-m and TRE-a values of all variants of the applied registration scheme (mean difference
between TRE-m and TRE-a values: 0.02±0.10 mm; p=0.12) – except for the variants with standard SSD as
distance measure. For these registration schemes, the TRE-a is significantly lower than the TRE-m (mean
difference: 0.6±0.2 mm; p<0.001), which may be due to the close relationship of CC and SSD.26

However, using TRE-m and TRE-a values for comparison of different registration strategies, general state-
ments as well as the assessment of statistical significance of differences in registration accuracy due to different
choices of the individual building blocks of the registration scheme turned out to be identical. For the selected
parameters and data sets, TRE values were on average almost identical for the elastic registration variants when
compared to corresponding approaches with diffusion smoothing (mean differences 0.1±0.2 mm for both TRE-a
and TRE-m); differences between the three Thirion-type force variants were in the same order for both TRE-m
and TRE-a (p-values > 0.6 for pairwise comparison of the force terms). Further, TRE values were observed to
be slighty, but significantly worse for the symmetric-diffeomorphic schemes than for the standard or the diffeo-
morphic schemes (differences 0.1 mm, p-values < 0.05 for both manually and automatically detected landmarks).
Finally, statements that are obvious when considering Tab. 1 (Thirion-type measures better than standard SSD,
masked registration more accurate than unmasked registration) also agreed when considering TRE-m and TRE-a
as evaluation criteria.

4. DISCUSSION AND CONCLUSIONS

Reviving earlier work on landmark detection we showed that the Förstner-Rohr-type operators are well suited
for automatic landmark detection in lung CT and liver MRT data – especially when compared with only the
image gradient magnitude as detection operator or even the combination of both the normalized image gradient
magnitude and an intensity-based local dissimilarity measure as proposed by Murphy et al.9,14 (Werner et al.:20

60% of the points detected by the combined terms rated as “anatomically characteristic”; study based on solely
lung CT images). Some open questions still remain: Applying the Förstner-Rohr-type operators, bifurcations of
large bronchi or vessels are not detected as landmark candidates, and localization problems well known for these
operators27 were also observed. Studying more sophisticated versions/implementations of the structure tensor
and the operators28 and/or integrating, e. g., multi-scale detection strategies will be part of our future work.
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Table 1. TRE-m and TRE-a values for the registration approaches considered (Th = Thirion-type term; A = active, P =
passive, D = dual). Listed are mean values and standard deviations of the patient-specific mean values; numbers in mm.

Standard diffeomorphic sym.-diffeomorphic
regularizer + reg. scheme reg. scheme reg. scheme
dissimilarity term TRE-m TRE-a TRE-m TRE-a TRE-m TRE-a

— masked registration (i.e., evaluation only inside lung mask) —

Sdiff + DSSD 2.0± 1.0 1.7± 0.8 2.0± 1.0 1.6± 0.7 2.1± 1.2 1.7± 0.7

Sdiff + DTh,P 1.2± 0.2 1.4± 0.4 1.3± 0.2 1.4± 0.3 1.6± 0.7 1.5± 0.6

Sdiff + DTh,A 1.3± 0.2 1.3± 0.3 1.3± 0.3 1.3± 0.3 1.6± 0.7 1.6± 0.7

Sdiff + DTh,D 1.2± 0.2 1.3± 0.3 1.2± 0.2 1.3± 0.3 1.6± 0.7 1.5± 0.6

Selas + DSSD 2.7± 1.2 2.4± 1.0 2.8± 1.3 2.4± 1.0 2.8± 1.3 2.4± 1.0

Selas + DTh,P 1.2± 0.2 1.4± 0.4 1.3± 0.2 1.4± 0.4 1.4± 0.3 1.5± 0.5

Selas + DTh,A 1.2± 0.1 1.3± 0.3 1.3± 0.2 1.3± 0.3 1.4± 0.4 1.4± 0.4

Selas + DTh,D 1.2± 0.1 1.3± 0.3 1.2± 0.2 1.3± 0.3 1.3± 0.2 1.4± 0.4

— unmasked registration —

Sdiff + DSSD 3.6± 1.9 2.7± 1.4 3.1± 1.5 2.3± 1.0 3.6± 1.6 2.6± 1.2

Sdiff + DTh,P 2.0± 1.0 1.9± 1.0 2.1± 1.0 2.0± 1.0 2.1± 1.0 1.9± 0.9

Sdiff + DTh,A 2.0± 1.0 1.9± 0.9 2.0± 1.0 1.9± 0.9 2.0± 1.0 1.9± 1.0

Sdiff + DTh,D 2.0± 1.0 1.8± 0.9 1.9± 1.0 1.8± 0.9 2.0± 1.0 1.9± 1.0

Selas + DSSD 3.8± 1.7 3.0± 1.3 3.8± 1.7 3.0± 1.4 3.8± 1.7 3.1± 1.4

Selas + DTh,P 2.0± 1.0 1.9± 1.0 2.1± 1.1 1.9± 1.0 2.1± 1.0 2.0± 1.0

Selas + DTh,A 1.8± 0.9 1.8± 0.9 1.9± 1.0 1.9± 0.9 2.0± 0.9 1.9± 0.9

Selas + DTh,D 1.8± 0.8 1.7± 0.8 1.8± 0.8 1.8± 0.8 1.9± 0.8 1.8± 0.9

Moreover, based on a robust block matching strategy for landmark propagation between images of 4D
datasets, it was shown that a target registration error computed using automatically detected landmark cor-
respondences is appropriate for (a first) assessment of non-linear registration accuracy – at least in the case
of registration of lung CT data considered in this contribution. Further studies on the interdependency of the
proposed propagation strategy and dissimilarity measures considered during registration are, however, required.

Eventually, in this study only 4D image sequences were considered that represent anatomical differences due to
breathing motion. It would also be interesting to evaluate the appropriateness of the proposed methods for land-
mark correspondence detection and evaluation of non-linear registration when applied to, e.g., baseline/follow-up
image pairs.
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