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Abstract

Ischemic stroke is the most common cerebrovascular disease, and its diagnosis, treatment, and study relies on non-invasive imaging.
Algorithms for stroke lesion segmentation from magnetic resonance imaging (MRI) volumes are intensely researched, but the
reported results are largely incomparable due to different datasets and evaluation schemes. We approached this urgent problem of
comparability with the Ischemic Stroke Lesion Segmentation (ISLES) challenge organized in conjunction with the MICCAI 2015
conference. In this paper we propose a common evaluation framework, describe the publicly available datasets, and present the
results of the two sub-challenges: Sub-Acute Stroke Lesion Segmentation (SISS) and Stroke Perfusion Estimation (SPES). A total
of 16 research groups participated with a wide range of state-of-the-art automatic segmentation algorithms. A thorough analysis
of the obtained data enables a critical evaluation of the current state-of-the-art, recommendations for further developments, and the
identification of remaining challenges. The segmentation of acute perfusion lesions addressed in SPES was found to be feasible.
However, algorithms applied to sub-acute lesion segmentation in SISS still lack accuracy. Overall, no algorithmic characteristic of
any method was found to perform superior to the others. Instead, the characteristics of stroke lesion appearances, their evolution,
and the observed challenges should be studied in detail. The annotated ISLES image datasets continue to be publicly available
through an online evaluation system to serve as an ongoing benchmarking resource (www.isles-challenge.org).
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1. Introduction1

Ischemic stroke is the most common cerebrovascular disease2

and one of the most common causes of death and disability3

worldwide (WHO, 2012). In ischemic stroke an obstruction4

of the cerebral blood supply causes tissue hypoxia (underper-5

fusion) and advancing tissue death over the next hours. The6

affected area of the brain, the stroke lesion, undergoes a num-7

ber of disease stages that can be subdivided into acute (0-24h),8

sub-acute (24h-2w), and chronic (>2w) according to the time9

passed since stroke onset (González et al., 2011). Magnetic10

resonance imaging (MRI) of the brain is often used to assess11

the presence of a stroke lesion, it’s location, extent, age, and12

other factors as this modality is highly sensitive for many of the13

critical tissue changes observed in stroke.14

Time is brain is the watchword of stroke units worldwide.15

Possible treatment options are largely restricted to reperfu-16

sion therapies (thrombolysis, thrombectomy), which have to17

be administered not later than four to six hours after the on-18

set of symptoms. Unfortunately, these interventions are asso-19

ciated with an increasing risk of bleeding the longer the le-20

sion has been underperfused. To this end, considerable effort21

has gone into finding image descriptors that predict stroke out-22

come (Wheeler et al., 2013), treatment response (Albers et al.,23

2006; Lansberg et al., 2012), or the patients that would bene-24

fit from a treatment even beyond the regular treatment window25

(Kemmling et al., 2015).26

At present, only a qualitative lesion assessment is incorpo-27

rated in the clinical workflow. Stroke research studies, which28

require quantitative evaluation, depend on manually delineated29

lesions. But the manual segmentation of the lesion remains a30

tedious and time consuming task, taking up to 15 minutes per31

case (Martel et al., 1999), with low inter-rater agreement (Neu-32

mann et al., 2009). Developing automated methods that locate,33

segment, and quantify the stroke lesion area from MRI scans re-34

mains an open challenge. Suitable image processing algorithms35

can be expected to have a broad impact by supporting the clin-36

icians’ decisions and render their predictions more robust and37

reproducible.38

In the treatment decision context, an automatic method39

would provide the medical practitioners with a reliable and,40

above all, reproducible penumbra estimation, based on on41

which quantitative decision procedures can be developed to42

weight the treatment risks against the potential gain. For med-43

ical trials, the results would become more reliable and repro-44

ducible, hence strengthening the finding and reducing the re-45

quired amount of subjects for credible results. Another bene-46

ficiary would be cognitive neuroscientists, who often perform47

studies where cerebral injuries are correlated with cognitive48

function and for whom lesion segmentation is an important pre-49

requisite for statistical analysis.50
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of their algorithms as indicated in the appendix

Still, segmenting stroke lesions from MRI images poses a51

challenging problem. First, the stroke lesions’ appearance52

varies significantly over time, not only between but even within53

the clinical phases of stroke development. This holds especially54

true for the sub-acute phase, which is studied in the SISS sub-55

challenge: At the beginning of this interval, the lesion usually56

shows strongly hyperintense in the diffusion weighted imaging57

(DWI) sequence and moderately hyperintense in fluid attenua-58

tion inversion recovery (FLAIR). Towards the second week, the59

hyperintensity in the FLAIR sequence increases while the DWI60

appearance converges towards isointensity (González et al.,61

2011). Additionally, a ring of edema can build up and disap-62

pear again. In the acute phase, the DWI denotes the infarcted63

region as hyperintensity. The magnitude of the actual under-64

perfusion shows up on perfusion maps. The mismatch between65

these two is often considered the potentially salvageable tissue,66

termed penumbra (González et al., 2011). Second, stroke le-67

sions can appear at any location in the brain and take on any68

shape. They may or may not be aligned with the vascular sup-69

ply territories and multiple lesions can appear at the same time70

(e.g. caused by an embolic shower). Some lesions may have71

radii of few millimeters while others encompass almost a com-72

plete hemisphere. Third, lesion structures may not appear as73

homogeneous regions; instead, their intensity can vary signifi-74

cantly within the lesion territory. In addition, automatic stroke75

lesion segmentation is complicated by the possible presence of76

other stroke-similar pathologies, such as chronic stroke lesions77

or white matter hyperintensities (WMHs). The latter is espe-78

cially prevalent in older patients which constitute the highest79

risk group for stroke. Finally, a good segmentation approach80

must comply with the clinical workflow. That means working81

with routinely acquired MRI scans of clinical quality, coping82

with movement artifacts, imaging artifacts, the effects of vary-83

ing scanning parameters and machines, and producing results84

within the available time window.85

1.1. Current methods86

The quantification of stroke lesions has gained increasing in-87

terest during the past years (Fig. 1). Nevertheless, only few88

groups have started to develop automatic image segmentation89

techniques for this task in recent years despite the urgency of90

this problem. A recent review of non-chronic stroke lesion seg-91

mentation (Rekik et al., 2012) summarizes the most important92

works until 2008, reporting as few as five automated stroke le-93

sion segmentation algorithms. A collection of more recent ap-94

proaches not included in Rekik et al. (2012) are listed in Ta-95

ble 1. While an increasing number of automatic solutions are96

presented, there are also a number of semi-automatic methods97

indicating the difficulty of the task. Among the automatic al-98

gorithms, only a few employ pattern classification techniques99

to learn a segmentation function (Prakash et al., 2006; Maier100

et al., 2014, 2015c) or design probabilistic generative models101

of the lesion formation (Derntl et al., 2015; Menze et al., 2015;102

Forbes et al., 2010; Kabir et al., 2007; Martel et al., 1999).103

While all approaches make an effort to quantify segmenta-104

tion accuracies, most lack detailed descriptions of the employed105
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Table 1: Listing of publications describing non-chronic stroke lesion segmentation in MRI with evaluation on human image data since Rekik et al. (2012). Column
A denotes the lesion phase, i.e., (A)cute, (S)ub-acute or (C)hronic. Column T denotes the method type, i.e., (A)utomatic or (S)emi-automatic. Column N denotes
the number of testing cases (mostly leave-one-out evaluation scheme is employed). Column Sequences denotes the used MRI sequences. Column DC denotes the
reported Dice’s coefficient score if available. Column Metrics denotes the metrics used in the evaluation. Abbreviations are: V=visual evaluation, VE=volume
error, PPV=positive prediction value, +=other metrics, m=median reported. Note that the lesion phases were adapted to our definition if sufficient information was
available.

Method A T N Sequences DC Metrics

Prakash et al. (2006) A A 57 DWI 0.72 DC,+
Soltanian-Zadeh et al. (2007) ASC A 2 T1,T2,DWI,PD +

Seghier et al. (2008) SC A 8 T1 0.64 DC
Forbes et al. (2010) ? A 3 T2,FLAIR,DWI 0.63 DC
Saad et al. (2011) AC A ? DWI V
Mujumdar et al. (2012) A S 41 DWI,ADC 0.81 DC
Artzi et al. (2013) AS S 10 FLAIR,DWI ASSD,HD,VE
Maier et al. (2014) S A 8 T1,T2,FLAIR,DWI,ADC 0.74 DC,ASSD,HD
Tsai et al. (2014) AS A 22 DWI,ADC 0.9 DC,PPV
Mah et al. (2014) S A 38 T2,DWI 0.73 DCm,+
Nabizadeh et al. (2014) AS S 6 DWI 0.80 DC,+
Ghosh et al. (2014) S A 2 ADC VE
Maier et al. (2015c) S A 37 T1,T2,FLAIR,DWI,ADC 0.63 DC,ASSD,HD
Muda et al. (2015) AC A 20 DWI 0.73 DC
Derntl et al. (2015) S A 13 T1,T1c,T2,FLAIR 0.42 DC
Menze et al. (2015) AS A 18 T1,T1c,T2,FLAIR,DWI 0.78 DC
Maier et al. (2015b) S A 37 FLAIR 0.44-0.67 DC,ASSD,HD
Maier et al. (2015b) S A 37 T1,T2,FLAIR,DWI,ADC 0.54-0.73 DC,ASSD,HD

dataset, which is a critical matter as stroke lesion shape and ap-106

pearance changes rapidly during the first hours and days, sig-107

nificantly altering the difficulty of the segmentation task. In-108

formation about the stroke evolution phase is sometimes omit-109

ted (Seghier et al., 2008; Forbes et al., 2010) or, if mentioned,110

not clearly defined (Saad et al., 2011; Muda et al., 2015). Where111

provided, the definition of acute stroke often mixes with the112

sub-acute phase (Ghosh et al., 2014; Mah et al., 2014; Tsai113

et al., 2014). Only a few studies give details on pathological114

inclusion and exclusion criteria of the data (James et al., 2006;115

Maier et al., 2015c), although these are important characteris-116

tics: Results obtained on right-hemispheric stroke only (Dasti-117

dar et al., 2000) are not comparable to ones omitting small le-118

sions (Mah et al., 2014) nor to those obtained from two cen-119

tral axial slices of each volume (Li et al., 2004). Compa-120

rability is further impeded by a wide range of dataset sizes121

(N ∈ [2, 57]), employed MRI sequences and quantitative eval-122

uation measures. All this renders the interpretation of the re-123

sults difficult and explains the wide range of segmentation ac-124

curacies reported over the years. A very recent work (Maier125

et al., 2015b) compares a number of classification algorithms126

on a common dataset, but these do not fully represent the state-127

of-the-art nor are they implemented by their respective authors.128

In the present benchmark study, we approach the urgent129

problem of comparability. To this end, we planned, organized,130

and pursued the Ischemic Stroke LEsion Segmentation (ISLES)131

challenge: A direct, fair, and independently controlled compari-132

son of automatic methods on a carefully selected public dataset.133

ISLES 2015 was organized as a satellite event of the Interna-134

tional Conference on Medical Image Computing and Computer135

Assisted Intervention (MICCAI) 2015, held in Munich, Ger-136

many. ISLES combined two sub-challenges dealing with dif-137

ferent phases of the stroke lesion evolution: First, the Stroke138

Perfusion EStimation (SPES) challenge dealing with the image139

interpretation of the acute phase of stroke; second, the Sub-140

acute Ischemic Stroke lesion Segmentation (SISS) challenge141

dealing with the later stroke image patterns. In both tasks we142

aim at answering a number of open questions: What is the cur-143

rent state-of-the-art performance of automatic methods for is-144

chemic stroke lesion segmentation? Which type or class of145

algorithms is most suited for the task? Which difficulties are146

overcome and which challenges remain? And what are the rec-147

ommendations we can give to researchers in the field after the148

extensive evaluation conducted?149

2. Setup of ISLES150

Image segmentation challenges aim at an independent and151

fair comparison of various segmentation methods for a given152

segmentation task. In these de-facto benchmarks participants153

are first provided with representative training data with associ-154

ated ground truth, on which they can adjust their algorithms.155

Later, a testing dataset without ground truth is distributed and156

the participants submit their results to the organizers, who score157

and rank the submissions.158

Previous challenges in the medical image processing com-159

munities dealt with the segmentation of tumors (Menze et al.,160

2015) or multiple sclerosis lesions (Styner et al., 2008) in161

MRI brain data; complete lungs (Murphy, 2011) or their ves-162

sels (Rudyanto et al., 2014) in computed tomography scans; 4D163

ventricle extraction (Petitjean et al., 2015) as well as myocardial164

tracking and deformation (Tobon-Gomez et al., 2013); prostate165

segmentation from MRI (Litjens et al., 2014); and brain extrac-166

tion in adults (Shattuck et al., 2009) and neonatals (Išgum et al.,167

2015).168

The number of challenges has been steadily increasing over169
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Figure 1: Increasing count of publications over the years as returned by Google
scholar for the search terms ischemic stroke segmentation on 2016-05-17.
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Figure 2: Increasing count of challenges over the years as collected on http:

//grand-challenge.org on 2016-05-17.

the past years (Fig. 2) as visible from the events listed on170

http://grand-challenge.org. Many of these have become171

the de-facto evaluation standard for new algorithms, in partic-172

ular when adhering to some standards listed on the same web173

resource: Both training and testing dataset are representative174

for the task, well described, and large enough to draw signif-175

icant conclusions from the results; the associated ground truth176

is created by experts following a clearly defined set of rules;177

the evaluation metrics chosen capture all aspects relevant for178

the task; and, ideally, challenges remain open for future contes-179

tants and serve as an ongoing benchmark for algorithms in the180

field.181

With ISLES 2015, we introduce for the first time a bench-182

mark for the growing but inaccessible collection of stroke le-183

sion segmentation algorithms. The challenge was launched in184

February 2015 and potential participants were contacted di-185

rectly following an extensive literature review on stroke seg-186

mentation or via suitable mailing lists. The training datasets187

for SISS and SPES were released in April 2015 using the the188

SICAS Medical Image Repository (SMIR) platform2 (Kistler189

et al., 2013). The participants were able to download the test-190

ing datasets from September 14, 2015, and had to submit their191

results within a week. The ground truth for this second set is192

kept private with the organizers. Repeated submissions were al-193

lowed, but only the last one counted. The organizers evaluated194

the submitted results and presented them during a final work-195

shop at the international MICCAI conference 2015 in Munich,196

Germany. All conclusions presented in this paper are drawn197

from these testing results.198

We refrained from an on-site evaluation as previous at-199

tempts (Murphy et al., 2011; Menze et al., 2015; Petitjean et al.,200

2015) have shown that such endeavors may be prone to compli-201

cations unrelated to the actual algorithms’ performances. In-202

stead, the results obtained on the evaluation set were hidden203

from the participants to avoid tuning on the testing dataset.204

The ISLES benchmark is open post-challenge for researchers205

to continue evaluating segmentation performance through the206

SMIR evaluation platform. The results and rankings of the ini-207

tial participants remain as a frozen table on the challenge web208

page3 while the SMIR platform supplies an automatically gen-209

erated listing of these and all future results.210

Interested research teams could register for one or both sub-211

challenges. All submitted algorithms were required to be fully212

automatic; no other restrictions were imposed. Until the day213

of the challenge, the SMIR platform listed over 120 registered214

users for the ISLES 2015 challenge and a similar count of train-215

ing dataset downloads. Of these, 14 teams provided testing216

dataset results for SISS and 7 algorithms participated in SPES.217

Their affiliations and methods can be found in Table 2. For a218

detailed description of the algorithms please refer to Appendix219

A.220

2www.smir.ch
3www.isles-challenge.org

4

http://grand-challenge.org
http://grand-challenge.org
http://grand-challenge.org
www.smir.ch
www.isles-challenge.org


Table 2: List of all participants in the ISLES challenge. All teams are color coded for easier reference in all further listings. The ML column denotes whether the
submitted algorithm is based on machine learning. Refer to the SISS and SPES columns for the sub-challenges each team participated in. Additionally, a very short
summary of each method is provided. For a detailed description of each algorithm and used abbreviations see Appendix A.

Team FN SN ML SISS SPES

– UK-Imp1 Liang Chen Y Y
Regional RFs (dorsal, medial, ventral)

– DE-Dkfz Michael Goetz Y Y
Image selector RF + online lesion ET

– FI-Hus Hanna Halme Y Y
RF (deviation from global average) + Contextual Clustering (CC)

– CA-McGill Andrew Jesson Y Y
Local classifiers (554 GMM) + regional RF

– UK-Imp2 Konstantinos Kamnitsas Y Y
2-path 3D CNN + CRF

– US-Jhu John Muschelli Y Y
RF (e.g. SD, skew, kurtosis)

– SE-Cth Qaiser Mahmood Y Y
RF (e.g. gradient, entropy)

– US-Odu Syed Reza Y Y
RF (many features, e.g., texture)

– TW-Ntust Ching-Wei Wang Y Y
RF (many features, e.g., edge)

– CN-Neu Chaolu Feng N Y Y
Bias-correcting Fuzzy C-Means + Level Set

– BE-Kul1 Tom Haeck N Y Y
Tissue priors + EM-opt MRF + Level Set on sequence subset

– CA-USher Francis Dutil Y Y Y
2-path 2D CNN

– DE-UzL Oskar Maier Y Y Y
RF (anatomically and appearance motivated features)

– BE-Kul2 David Robben Y Y Y
Cascaded ETs

– DE-Ukf Elias Kellner N Y
Rule-based hemisphere-comparing approach

– CH-Insel Richard McKinley Y Y
RF (case bootstrapped forest of forests)

3. Data and methods221

3.1. SISS image data and ground truth222

We gathered 64 sub-acute ischemic stroke cases for the train-223

ing and testing sets of the SISS challenge. A total of 56 cases224

were supplied by the University Medical Center Schleswig-225

Holstein in Lübeck, Germany. They were acquired in diagnos-226

tic routine with varying resolutions, views, and imaging arti-227

fact load. Another eight cases were scanned at the Department228

of Neuroradiology at the Klinikum rechts der Isar in Munich,229

Germany. Both centers are equipped with 3T Phillips systems.230

The local ethics committee approved their release under Az.14-231

256A. Full data anonymization was ensured by removing all232

patient information from the files and the facial bone structure233

from the images.234

Considered for inclusion were all cases with a diagnosis of235

ischemic stroke for which at least the set of T1-weighted (T1),236

T2-weighted (T2), DWI (b = 1000) and FLAIR MRI sequences237

had been acquired. Additional pathological deformation, such238

as, e.g., non-stroke WMHs, haemorrhages, or previous strokes,239

did not lead to the exclusion of a case. Scans performed out-240

side the sub-acute stroke development phase were rejected. As241

the exact time passed since stroke onset is not known in most242

cases, lesions were visually classified as sub-acute infarct if a243

pathologic signal was found concomitantly in FLAIR and DWI244

images (presence of vasogenic and cytotoxic edema with evi-245

dence of swelling due to increased water content).246

In order to focus the analysis on the participating algo-247

rithms rather than assessing the preprocessing techniques em-248

ployed by each team, all cases were consistently preprocessed249

by the organizers: The MRI sequences are skull-stripped using250

BET2 (Jenkinson et al., 2005) with a manual correction step251

where required, b-spline-resampled to an isotropic spacing of252

1 mm3, and rigidly co-registered to the FLAIR sequences with253

the elastix toolbox (Klein et al., 2010).254

Acquired in a routine diagnostic setting and representing255

the clinical reality, these data sets are afflicted by secondary256

pathologies, such as stroke similar deformations and chronic257

stroke lesions, as well as imaging artifacts, varying acquisition258

orientations, differing resolutions, or movement artifacts.259

In addition to the wide range of acquisition and clinically re-260

lated variety, the sub-acute lesions themselves display a wide261

range of variability (Table 3). Great care has been taken to262

preserve the diversity of the stroke cases when splitting the263

data into testing and training datasets: both contain single- and264

multi-focal cases, small and large lesions, and were divided by265

further criteria (Table 3). The main difference between the sets266

is the addition of the eight cases from Munich to the testing267
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Table 3: Stroke lesion characteristics of the 64 SISS cases. The strong diversity is representative for stroke lesions and emphasizes the difficulty of the task. µ
denotes the mean value, [min,max] the interval and n the total count. Abbreviations are: anterior cerebral artery (ACA), middle cerebral artery (MCA), posterior
cerebral artery (PCA) and basilar artery (BA).

Lesion count µ = 2.46
[1, 14]

Lesion volume µ = 17.59 ml
[1.00, 346.06]

Haemorrhage present n1 = 12
0=no,1=yes

Non-stroke WMH load µ = 1.34
0=none, 1=small, 2=medium, 3=large

Lesion localization (lobes) n1 = 11, n2 = 24, n3 = 42, n4 = 17, n5 = 2, n6 = 6
1=frontal, 2=temporal, 3=parietal, 4=occipital, 5=midbrain, 6=cerebellum

Lesion localization n1 = 36, n2 = 49
1=cortical, 2=subcortical

Affected artery n1 = 6, n2 = 45, n3 = 11, n4 = 5, n5 = 0
1=ACA, 2=MCA, 3=PCA, 4=BA, 5=other

Midline shift n0 = 51, n1 = 5, n2 = 0
0=none, 1=slight, 2=strong

Ventricular enhancement n0 = 38, n1 = 15, n2 = 3
0=none, 1=slight, 2=strong

Laterality n1 = 18, n2 = 35, n3 = 3
1=left, 2=right, 3=both

Table 4: Details of the SISS data.

number of cases 28 training and 36 testing
number of medical centres 1 (train), 2 (test)
number of expert segmentations for
each case

1 (train), 2 (test)

MRI sequences FLAIR, T2 TSE, T1 TFE/TSE,
DWI

dataset only; hence, this second center data was not available268

during the training phase (Table 4).269

All expert segmentations used in ISLES were prepared by270

experienced raters. For SISS, two ground truth sets (GT01 and271

GT02) were created and the segmentations were performed on272

the FLAIR sequence, which is known to exhibit lower inter-273

rater differences as, e.g., T2 (Neumann et al., 2009). The guide-274

lines for expert raters were as follows:275

1. The segmentation is performed on the FLAIR sequence276

2. Other sequences provide additional information277

3. Only sub-acute ischemic stroke lesions are segmented278

4. Partially surrounded sulci/fissures are not included279

5. Very thin/small or largely surrounded sulci/fissures are included280

6. Surrounded haemorrhagic transformations are included281

7. The segmentation contains no holes282

8. The segmentation is exact but spatially consistent (no sudden spikes or283

notches)284

Acute infarct lesions (DWI signal for cytotoxic edema only,285

no FLAIR signal for vasogenic edema) or residual infarct le-286

sions with gliosis and scarring after infarction (no DWI sig-287

nal for cytotoxic edema, no evidence of swelling) were not in-288

cluded. For the training, only GT01 was made available to the289

participants, while the testing data evaluation took place over290

both sets.291

3.2. SPES image data and ground truth292

All patients included in the SPES dataset were treated for293

acute ischemic stroke at the University Hospital of Bern be-294

tween 2005 and 2013. Patients included in the dataset received295

the diagnosis of ischemic stroke by MRI with an identifiable le-296

sion on DWI as well as on perfusion weighted imaging (PWI),297

with a proximal occlusion of the middle cerebral artery (MCA)298

(M1 or M2 segment) documented on digital subtraction angiog-299

raphy. An attempt at endovascular therapy was undertaken, ei-300

ther by intra-arterial thrombolysis (before 2010) or by mechan-301

ical thrombectomy (since 2010). The patients had a minimum302

age of 18 and the images were not subject to motion artifacts.303

The stroke MRI was performed on either a 1.5T (Siemens304

Magnetom Avanto) or 3T MRI system (Siemens Magnetom305

Trio). The stroke protocol encompassed whole brain DWI306

(24 slices, thickness 5 mm, repetition time 3200 ms, echo307

time 87 ms, number of averages 2, matrix 256 × 256) yield-308

ing isotropic b1000 images. For PWI the standard dynamic-309

susceptibility contrast enhanced perfusion MRI (gradient-echo310

echo-planar imaging sequence, repetition time 1410 ms, echo311

time 30 ms, field of view 230 × 230 mm, voxel size: 1.8 ×312

1.8 × 5.0 mm, slice thickness 5 mm, 19 slices, 80 acquisi-313

tions) was acquired. PWI scans were recorded during the first314

pass of a standard bolus of 0.1 mmol/kg gadobutrol (Gadovist,315

Bayer Healthcare). Contrast medium was injected at a rate316

of 5 ml/s followed by a 20 ml bolus of saline at a rate of317

5 ml/s. Perfusion maps were obtained by block-circular sin-318

gular value decomposition using the Perfusion Mismatch Ana-319

lyzer (PMA, from Acute Stroke Imaging Standardization Group320

ASIST) Ver.3.4.0.6. The arterial input function is automatically321

determined by PMA based on histograms of peak concentra-322

tion, time-to-peak and mean transit time.323

Sequences and derived maps made available to the partici-324

pants are T1 contrast enhanced (T1c), T2, DWI, cerebral blood325

flow (CBF), cerebral blood volume (CBV), time-to-peak (TTP),326

and time-to-max (Tmax) (Table 5).327

For preprocessing, all images were rigidly registered to the328

T1c with constant resolution of 2× 2× 2 mm and automatically329
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Table 5: Details of the SPES data.

number of cases 30 training and 20 testing
number of medical centres 1
number of expert segmentations for
each case

1

MRI sequences T1c, T2, DWI, CBF, CBV, TTP,
Tmax

Table 6: Stroke lesion characteristics of the 50 SPES cases. The cases are
restricted to MCA stroke eligible for cerebrovascular treatment. µ denotes the
mean value, [min,max] the interval and n the total count.

Lesion count µ = 1
Not always connected, but single occlusion as source.

Lesion volume µ = 133.21 ml
[45.62, 252.20]

Affected artery all MCA
Laterality n1 = 22, n2 = 28, n3 = 0

1=left, 2=right, 3=both

skull-stripped (Bauer et al., 2013). This resolution was chosen330

in regard to the low 1.8.8 × 5.0 mm resolution of the PWI im-331

ages. Together with the removal of all patient data from the332

files, full anonymization was achieved.333

To determine the eligibility of a patient for treatment or to334

assess a treatment response in clinical trials, the pretreatment335

estimation of the potentially salvageable penumbral area is cru-336

cial. A 6 second threshold applied to the Tmax map has been337

suggested (Straka et al., 2010) and successfully applied in large338

multi-center trials (Lansberg et al., 2012) to determine the area339

of hypoperfusion (i.e. penumbra + core). But this approach340

requires the manual setting of a region of interest as well as341

considerable manual postprocessing. For SPES, we are inter-342

ested in whether advanced segmentation algorithms could re-343

place manual correction of thresholded perfusion maps, yield-344

ing faster and reproducible estimation of tissue at risk volume.345

The hypoperfused tissue was segmented semi-manually with346

Slicer 3D Version 4.3.1 by a medical doctor with a preadjusted347

threshold for Tmax of 6 seconds applied to regions of interest as348

described in Straka et al. (2010) and Lansberg et al. (2012), fol-349

lowed by a manual correction step consisting in removing sulci,350

non-stroke pathologies and previous infarcts by taking into ac-351

count the other perfusion maps and anatomical images. The la-352

bel represents the stroke-affected regions with restricted perfu-353

sion, which is the first requirement to determine the penumbral354

area via a perfusion-diffusion mismatch approach.355

The collected data therefore includes a variety of acute MCA356

cases (Table 6) that were split into training and testing cases by357

an experienced neuroradiologist using as criteria the complexity358

in visually defining the extent of the penumbral area.359

The training dataset is additionally equipped with a manu-360

ally created DWI segmentation ground truth set, which roughly361

denotes the stroke’s core area. These are not considered in the362

challenge.363

3.3. Evaluation metrics364

As measures we employ (1) Dice’s coefficient (DC), which365

describes the volume overlap between two segmentations and366

is sensitive to the lesion size; (2) the average symmetric sur-367

face distance (ASSD), which denotes the average surface dis-368

tance between two segmentations; and (3) the Hausdorff dis-369

tance (HD), which is a measure of the maximum surface dis-370

tance and hence especially sensitive to outliers.371

The DC is defined as

DC =
2|A ∩ B|
|A| + |B|

(1)

with A and B denoting the set of all voxels of ground truth and
segmentation respectively. To compute the ASSD we first de-
fine the average surface distance (ASD), a directed measure, as

AS D(AS , BS ) =

∑
a∈AS

minb∈BS d(a, b)
|AS |

(2)

and then average over both directions to obtain the ASSD

AS S D(AS , BS ) =
AS D(AS , BS ) + AS D(BS , AS )

2
(3)

Here AS and BS denote the surface voxels of ground truth and
segmentation respectively. Similar, the HD is defined as the
maximum of all surface distances with

HD(AS , BS ) = max{max
a∈AS

min
b∈BS

d(a, b),max
b∈BS

min
a∈AS

d(b, a)} (4)

The distance measure d(·) employed in both cases is the Eu-372

clidean distance, computed taking the voxel size into account.373

3.4. Ranking374

After selecting suitable evaluation metrics, we face the prob-375

lem of establishing a meaningful ranking for the competing al-376

gorithms as the different measures are neither in the same range377

nor direction.378

In the simplest case, metrics are evaluated individually and379

different rankings are offered (Menze et al., 2015). But this380

would mean neglecting the aspects revealed by the remaining381

measures and is hence a bad choice for most challenges.382

A second approach taken by some challenges (Styner et al.,383

2008) is to compare two expert segmentations against each384

other. The resulting evaluation values are then assumed to indi-385

cate the upper limit and hence denote the 100 percent mark of386

each measure. New segmentations are then evaluated and the387

values compared to their respective 100 percent marks, result-388

ing in a percentage rating for each measure. Drawback is that389

for measure with an infinite range, such as the ASSD, one has390

to define an arbitrary zero percent mark.391

We chose a third approach based on the ideas of Murphy et al.392

(2011) that builds on the concept that a ranking reveals only the393

direction of a relationship between two items (i.e. higher, lower,394

equal) but not its magnitude. Basically, each participant’s re-395

sults are ranked per case according to each of the three metrics396

and then the obtained ranks are averaged. For a more detailed397

account see Appendix B.398
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3.5. Label fusion399

The specific design of each automatic segmentation algo-400

rithm will result in certain strengths and weaknesses for par-401

ticular challenges in the present image data. Multiple strategies402

have been proposed in the past to automatically determine the403

quality of several raters or segmentation algorithms (Xu et al.,404

1992; Warfield et al., 2004; Langerak et al., 2010). These al-405

gorithms enable a suitable selection and/or fusion to best com-406

bine complementary segmentation approaches. To study and407

compensate the potential varying segmentation accuracy of all408

methods for individual cases, we apply the following three pop-409

ular label fusion algorithms to their test results (see Tab 7,410

bottom): First, majority vote (Xu et al., 1992), which simply411

counts the number of foreground votes over all classification412

results for each voxel separately and assigns a foreground la-413

bel if this number is greater than half the number of algorithms.414

Second, the STAPLE algorithm (Warfield et al., 2004), which415

performs a simultaneous truth and performance level estima-416

tion, that calculates a global weight for each rater and attempts417

to remove the negative influence of poor algorithms during ma-418

jority voting. Third, the SIMPLE algorithm (Langerak et al.,419

2010), which employs a selective and iterative method for per-420

formance level estimation by successively removing the algo-421

rithms with poorest accuracy as judged by their respective Dice422

score against a weighted majority vote, where the weights are423

determined by the previously estimated performances.424

4. Results: SISS425

4.1. Inter-observer variance426

Comparing the two ground truths of SISS against each other427

provides (1) the baseline above which an automatic method can428

be considered to produce results superior to a human rater and429

(2) a measure of the task’s difficulty (Table 7, last row). The430

two expert segmentations overlap at least partially for all cases.431

Compared to similar tasks, such as, e.g., brain tumor segmen-432

tation, for which inter-observer DC values of 0.74 ± 0.13 to433

0.85 ± 0.08 are reported (Menze et al., 2015), the ischemic434

stroke lesion segmentations problem can be considered difficult435

with a mean DC score of 0.70 ± 0.20.436

4.2. Leaderboard437

The main result of the SISS challenge is a leaderboard for438

state-of-the-art methods in sub-acute ischemic stroke lesion439

segmentation (Table 7). The evaluation measures and ranking440

system employed are described in the method part of this article441

(Sec. 3.4). No participating method succeeded in segmenting442

all 36 testing cases successfully (DC> 0) and the best scores443

are still substantially below the human rater performance. Note444

that for all following experiments, we will focus on DC aver-445

ages only as the ASSD and HD values cannot be readily com-446

puted for the failed cases and are thus not suitable for a direct447

comparison of methods with differing numbers of failure cases.448

Figure 4: Adaptation to the data from the second medical center. The graph
shows each method’s average DC scores on the 28 cases from the first and the
eight cases from the second medical center. The methods are color coded.

4.3. Statistical analysis449

We performed a statistical analysis of the results to rule out450

random influences on the leaderboard ranking. Each pair of451

methods is compared with the two-sided Wilcoxon signed-rank452

test (Wilcoxon, 1945), a nonparametric test of the null hypothe-453

sis that two samples come from the same population against an454

alternative hypothesis (Fig. 3).455

The two highest ranking methods, UK-Imp2 and CN-Neu,456

show no statistically significant differences with a confidence457

of 95% (i.e. p < 0.025). No other algorithm performs better458

than them, and they both are better than the 12 remaining ones.459

Next comes a group of four methods (FI-Hus, BE-Kul2, US-460

Odu, De-UzL) to which only the two winners prove superior.461

But among these, FI-Hus takes the highest position as it is sta-462

tistically better than eight other methods, while the other three463

only prove superior to at most four competitors. The established464

leaderboard ranking is largely confirmed by the statistical anal-465

ysis.466

4.4. Impact of multi-center data467

Cases acquired at different medical centers can differ greatly468

in appearance. A good automatic stroke lesion segmentation469

method should be able to cope with these variations. We broke470

down each method’s results by medical center (Fig. 4) to test471

whether this holds true for the participating algorithms.472

Since the training dataset contained only cases from the first473

center, the difference in performance should reveal the meth-474

ods’ generalization abilities. We observed that not a single algo-475

rithm reached second center scores comparable to its first center476

scores. This is a strong hint towards a difficult adaptation prob-477

lem.478

4.5. Combining the participants’ results by label fusion479

Applying the three label fusion algorithms presented in480

Sec. 3.5 lead to the results presented in Table 7 at the bot-481

tom. We found that the SIMPLE algorithm performed best and482

could reduce outliers as evident by a lower Hausdorff distance.483

When using majority voting or STAPLE, the negative influence484

of multiple failed segmentations that are correlated yielded a485

lower accuracy than at least the two top ranked algorithms.486
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Table 7: SISS challenge leaderboard after evaluating the 14 participating methods on the testing dataset. The rank is the final measure for ordering the algorithms’
performances relative to each other. The cases column denotes the number of successfully (i.e., all DC> 0) segmented cases. All evaluation measures are given in
mean±STD. Please note that the ASSD and HD values were computed excluding the failed cases (they do, however, incur the lowest vacant rank for these cases).
The three next-to-last rows display the results obtained with different fusion approaches. The last row shows the inter-observer results for comparison.

Rank Method Cases ASSD (mm) DC [0,1] HD (mm)

3.25 – UK-Imp2 34/36 05.96 ± 09.38 0.59 ± 0.31 37.88 ± 30.06
3.82 – CN-Neu 32/36 03.27 ± 03.62 0.55 ± 0.30 19.78 ± 15.65
5.63 – FI-Hus 31/36 08.05 ± 09.57 0.47 ± 0.32 40.23 ± 33.17
6.40 – US-Odu 33/36 06.24 ± 05.21 0.43 ± 0.27 41.76 ± 25.11
6.67 – BE-Kul2 33/36 11.27 ± 10.17 0.43 ± 0.30 60.79 ± 31.14
6.70 – DE-UzL 31/36 10.21 ± 09.44 0.42 ± 0.33 49.17 ± 29.6
7.07 – US-Jhu 33/36 11.54 ± 11.14 0.42 ± 0.32 62.43 ± 28.64
7.54 – UK-Imp1 34/36 11.71 ± 10.12 0.44 ± 0.30 70.61 ± 24.59
7.66 – CA-USher 27/36 09.25 ± 09.79 0.35 ± 0.32 44.91 ± 32.53
7.92 – BE-Kul1 30/36 12.24 ± 13.49 0.37 ± 0.33 58.65 ± 29.99
7.97 – CA-McGill 31/36 11.04 ± 13.68 0.32 ± 0.26 40.42 ± 26.98
9.18 – SE-Cth 30/36 10.00 ± 06.61 0.38 ± 0.28 72.16 ± 17.32
9.21 – DE-Dkfz 35/36 14.20 ± 10.41 0.33 ± 0.28 77.95 ± 22.13

10.99 – TW-Ntust 15/36 07.59 ± 06.24 0.16 ± 0.26 38.54 ± 20.36

majority vote 34/36 11.47 ± 19.89 0.51 ± 0.30 38.11 ± 30.45
STAPLE 36/36 12.90 ± 10.64 0.44 ± 0.32 71.08 ± 25.03
SIMPLE 34/36 07.83 ± 14.97 0.57 ± 0.29 29.40 ± 28.11

inter-observer 36/36 02.02 ± 02.17 0.70 ± 0.20 15.46 ± 13.56

Figure 5: Differences in performance on the two ground truth sets. The graph
shows each methods average DC scores on the 36 testing dataset cases broken
down by ground truth set. A star (*) before a team’s name denotes statistical
significant difference according to a paired Student’s t-test with p < 0.05. The
methods are color coded.

4.6. Dependency on observer variations487

A good segmentation method does not only adapt well to sec-488

ond center data but equally to another observer’s ground truth.489

Only the GT01 ground truth set was made available to the par-490

ticipating teams during the training/tuning phase. Hence, par-491

ticularly machine learning solutions could be expected to show492

deficits on the second rater ground truth GT02. To test how well493

the methods generalize, we compared their performance on the494

testing sets GT01 ground truth against their performance on the495

formerly unseen GT02 set (Fig. 5).496

The average DC scores of each method differed only slightly497

over the ground truth sets. Only in a single case, UK-Imp2,498

the difference was significant (paired Student’s t-test with p <499

0.05), but the higher results were obtained for the, formerly un-500

seen, GT02 set. We can hence conclude that all algorithms gen-501

eralized well with respect to expert segmentations of different502

raters. An additional data analysis showed that the ranking of503

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
0.0

0.2

0.4

0.6

0.8

1.0

DC

Figure 6: Box plots of the 14 teams’ DC results on all testing dataset cases, i.e.,
the first box was computed from all teams’ results on the first case. The band
in the box denotes the median, the upper and lower limits the first and third
quartile. Outliers are plotted as diamonds.

the methods does not change if only one or the other of the504

ground truth sets is employed for evaluation.505

4.7. Outlier cases506

A benchmark is only as good as its data. The average scores507

obtained on the different cases of the testing dataset differed508

widely and some proved especially difficult or easy to segment509

(Fig. 6). For cases 29 to 36, this variation can be explained510

through the different acquisition parameters at the second med-511

ical center. But the weak performance of most methods on cases512

such as 10, 17 and 23 must have other reasons. We compared513

these visually to the overall most successful cases 2, 5 and 13514

to detect possible commonalities (Fig. 7).515

The three cases that were successfully processed by nearly all516

algorithms show large, clearly outlined lesions with a strongly517

hyperintense FLAIR signal. In two of these cases, the DWI sig-518

nal is relatively weak, in some areas nearly isointense. Still,519
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CA-USher
(1/3)

FI-Hus
(8/2)

CA-McGill
(2/5)

TW-Ntust
(0/13)

US-Jhu
(3/3)

UK-Imp1
(3/3)

BE-Kul2
(4/2)

BE-Kul1
(1/3)

CN-Neu
(12/0)

DE-UzL
(3/2)

DE-Dkfz
(1/8)

US-Odu
(4/2)

SE-Cth
(1/9)

UK-Imp2
(12/0)

Figure 3: Significant differences between the 14 participating methods’ case ranks according to a two-sided Wilcoxon signed-rank test (p < 0.025). Each node
represents a team, each edge a significant difference of the tail side team over the head side team. Therefore, the less outgoing and the more incoming edges a team
has (denoted by numbers in brackets (#out/#in) for easier interpretation), the weaker its method compared to the others. The saturation of the node colors indicates
the strength of a method, where better methods are highlighted with more saturated colors. Note that all teams with the same number of incoming and outgoing
edges perform, statistically spoken, equally well. A higher importance of incoming over outgoing edges or vice-versa cannot be readily established.

for these cases the algorithms displayed the highest confidence.520

One of the most difficult cases (17) contains only a single521

small lesion with marginal FLAIR and strong DWI hyperin-522

tensities. Another case (10), equally showing a small lesion,523

has a stronger FLAIR support, but also displays large periven-524

tricular WMHs that seem to confuse most algorithms despite525

missing DWI hyperintensities. This behavior was also visible526

for the third of the failed cases (17): Here, the actual lesion is527

correctly segmented by most methods as it is clearly outlined528

with strong FLAIR and DWI support. But many algorithms ad-529

ditionally delineated parts of the periventricular WMHs, which530

again only show up in the FLAIR sequence.531

4.8. Correlation with lesion characteristics532

The properties of the cases might have an influence on the533

segmentation quality as some are clearly easier to segment than534

others. To find such correlations, we related various lesion char-535

acteristics to the average DC scores obtained over all teams us-536

ing suitable statistics (Table 8).537

Significant moderate correlation was found between the le-538

sion volume and the average DC values. A statistically signifi-539

cant difference of means was found when comparing cases with540

haemorrhage present and cases without, as well as between left541

hemispheric and right hemispheric lesions. Since the charac-542

teristics cannot be assumed to be independent, we furthermore543

tested the last two groupings for significant differences in lesion544

volumes between the groups. This was found in both cases (see545

Table 8: Correlation between the SISS case characteristics and the average DC
values over all teams. A ρ denotes a Spearman correlation, a t a Student’s t-
test. All p-values are two tailed (p2). Significant results according to a 95%
confidence interval are denoted by a ∗. Secondary tests appearing in the table
were performed against the lesion volume rather than the average DC values.

Characteristic Test p2

Lesion count ρ = −0.21 0.23
Lesion volume ρ = +0.76 0.00∗
Haemorrhage present t = +2.29 0.03∗

vs. lesion volume t = +4.33 0.00∗
Non-stroke WMH load ρ = −0.01 0.97
Midline shift t = +0.51 0.62
Ventricular enhancement t = +1.56 0.13
Laterality t = +2.66 0.01∗

vs. lesion volume t = +2.12 0.03∗
Movement artifacts ρ = −0.30 0.08
Imaging artifacts ρ = +0.24 0.15
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Figure 7: Visual results for selected difficult (10, 17, 23), easy (2, 5, 13), and second center (29, 32) cases from the SISS testing dataset. The first row shows the
distribution of all 14 submitted results on a slice of the FLAIR volume. The second row shows the same image with the ground truth (GT01) outlined in red. And
the third row shows the corresponding DWI sequence. Please refer to the online version for colors.

secondary test for each of these two characteristics). We could546

not reliably establish a significant influence on the results for547

any single parameter. Even the influence of lesion volume is548

not certain as we will detail in the discussion.549

5. Results: SPES550

5.1. Leaderboard551

To establish an overall leaderboard for state-of-the-art meth-552

ods in automatic acute ischemic stroke lesion segmentation,553

all submitted results were ranked relatively as described in554

Sec.3.4 (Table 9).555

We opted not to calculate the HD for SPES as it does not re-556

flect the clinical interest of providing volumetric information of557

the penumbra region. In addition, since some lesions in SPES558

contained holes, the HD was not a useful metric for gauging559

segmentation quality. This ranking is the outcome of the chal-560

lenge event and was used to determine the competition winners.561

No completely failed segmentation (DC< 0) was submitted for562

any of the algorithms and the evaluation results of the highest563

ranking teams denote a high segmentation accuracy.564

5.2. Statistical analysis565

A strict ranking is suited to determine the winners of a com-566

petition, but average performance scores are ignoring the spread567

of the results. To this end, we pursued a statistical analysis that568

takes into account the dispersion in the distribution of case-wise569

results, and we compare each pair of methods with the two-570

sided Wilcoxon signed-rank test (Fig. 8).571

In this test, we do not observe significant differences between572

the two first ranked methods nor between the third and fourth573

place. Hence, SPES has two first ranked, two second ranked,574

and one third ranked method according to the statistical analy-575

sis.576

5.3. Results per case and method577

A similarity in performance based on statistical tests and av-578

erage scores between the first two and second two methods was579

already established. To test whether these pairs behave sim-580

ilarly for all of the testing dataset cases, we plotted the DC581

scores of each team against the cases (Fig. 9).582

The performance lines of the highest ranked methods, CH-583

Insel and DE-UzL, display a very similar pattern and, except584

for some small variation, reach mostly very similar DC values.585

It seems like both methods are doing roughly the same. This586

observation does not hold true for the two runner-ups, BE-Kul2587

and CN-Neu. Both methods display outliers towards the lower588

end and their performances for the testing dataset cases are not589

as near to each other as observed for the first two methods,590

i.e., while similar in average performance, the methods seem to591

represent different segmentation functions. The lowest ranked592

methods mainly differ from the others in the sense that they fail593

to cope with the more difficult cases.594

Overall, most algorithms exhibit the same tendencies, i.e.,595

imaging and/or pathological differences between the cases seem596

to influence all methods in a similar fashion. In other words, the597

methods agree largely on what could be considered difficult and598

easy cases.599
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Table 9: SPES challenge leaderboard after evaluating the 7 participating methods on the testing dataset. The rank is the final measure for ordering the algorithms’
performances relative to each other. The cases column denotes the number of successfully (i.e., all DC> 0) segmented cases. All evaluation measures are given
in mean±STD. Since no method failed completely on a single case, the reported ASSD values are suitable for a direct comparison between methods. The three
next-to-last rows display the results obtained with different fusion approaches. The last two rows denote thresholding methods employed in clinical studies.

rank method cases ASSD (mm) DC [0,1]

2.02 – CH-Insel 20/20 1.65 ± 1.40 0.82 ± 0.08
2.20 – DE-UzL 20/20 1.36 ± 0.74 0.81 ± 0.09
3.92 – BE-Kul2 20/20 2.77 ± 3.27 0.78 ± 0.09
4.05 – CN-Neu 20/20 2.29 ± 1.76 0.76 ± 0.09
4.60 – DE-Ukf 20/20 2.44 ± 1.93 0.73 ± 0.13
5.15 – BE-Kul1 20/20 4.00 ± 3.39 0.67 ± 0.24
6.05 – CA-USher 20/20 5.53 ± 7.59 0.54 ± 0.26

majority vote 20/20 1.75 ± 0.39 0.82 ± 0.08
STAPLE 20/20 2.40 ± 1.22 0.82 ± 0.06
SIMPLE 20/20 1.69 ± 0.50 0.83 ± 0.07

Tmax> 6s (Christensen et al., 2010) 20/20 13.02 ± 4.15 0.27 ± 0.10
Tmax> 6s & size> 3 ml (Straka et al., 2010) 20/20 7.04 ± 4.99 0.32 ± 0.13

CH-Insel
(5/0)

CA-USher
(0/5)

DE-Ukf
(1/2)

BE-Kul2
(2/2)

BE-Kul1
(0/4)

CN-Neu
(2/2)

DE-UzL
(5/0)

Figure 8: Visualization of significant differences between the 7 participating
methods’ case ranks. Each node represents a team, each edge a significant
difference of the tail side team over the head side team according to a two-sided
Wilcoxon signed-rank test (p < 0.025). Therefore, the less outgoing and the
more incoming edges a team has (denoted by numbers in brackets (#out/#in)
for easier interpretation), the weaker its method compared to the others. The
saturation of the node colors roughly denotes the strength of a method, where
better methods are depicted with stronger colors. Note that all teams with the
same number of incoming and outgoing edges perform, statistically spoken,
equally well.

The outcome of combining all participants’ results by means600

of label fusion (c.f. Sec.3.5) yielded the highest Dice scores601

when using the SIMPLE algorithm, but (for the SPES data) ap-602

plying STAPLE and majority vote produce a similar outcome603

(see Table 9, bottom)604

5.4. Outlier cases605

We took a close look at two cases with overall low average606

DC scores, cases 05 and 11, to establish a rationale behind the607

lower performance of the algorithms (Fig. 10). For case 05, we608

can be observed two previous embolisms that cause a compen-609

satory perfusion change, depicted as two hyperintensity regions610

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.0
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0.4
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CH-Insel
CA-USher
DE-Ukf
BE-Kul2
BE-Kul1
CN-Neu
DE-UzL

Figure 9: DC score result of all 7 SPES teams for each of the testing dataset
cases. Most methods show a similar pattern. Please refer to the online version
for color.

within the lesion area in the diffusion image and as hypoper-611

fused areas in the Tmax map. The difficulties associated to the612

segmentation of case 11 are related to an acute infarct present-613

ing a mismatch with a intensity pattern similar on the Tmax and614

in the borderline intensity range of 6 seconds. In summary, the615

main difficulties faced by the algorithms are related to physio-616

logical aspects, such as collateral flow, previous infarcts, etc.617

6. Discussion: SISS618

With the SISS challenge, we provided a public dataset with619

a fair and independent automatic evaluation system to serve as620

a general benchmark for automatic sub-acute ischemic stroke621

lesion segmentation methods. As main result of the challenge622

event, we are able to assess the current state of the art perfor-623

mance in automatic sub-acute ischemic stroke lesion segmenta-624

tion and to give well-founded recommendations for future de-625

velopments. In this section, we review the results of the exper-626

iments conducted, discuss their potential implications, and try627

to answer the questions posed in the introduction.628

Foremost, we aimed to establish if the task can be considered629

solved: The answer is a clear no. Even the best methods are630

still far from human rater performance as set by the inter-rater631
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Figure 10: Sequences of some cases with a low (05 and 11) and high (15) average DC score over all 7 teams participating in SPES. The ground truth is painted red
into the DWI sequence slices in the first column. The last column shows the distribution of the resulting segmentations on the gray-scale version of the TTP. All
perfusion maps are windowed equally for direct comparison. Please refer to the online version for colors.

results. And while the observers agreed at least partially in all632

cases, no automatic method segmented all cases successfully.633

Many issues remain and a target-oriented community effort is634

required to improve the situation.635

The best accuracy reached is an average DC of 0.6 with an636

ASSD of 4 mm. The high average HD of at least 20 mm re-637

veals many outliers and/or missed lesions. An STD of 0.3 DC638

denotes high variations; indeed, we observe many completely639

or largely failed cases for each method.640

Previously published DC results on sub-acute data (Table 1)641

are all slightly to considerably better. This underlines the642

need for a public dataset for stroke segmentation evaluation643

that encompasses the entire complexity of the task as private644

datasets are often too selective and the reported results differ645

greatly without providing the information required to identify646

the causes behind these variations.647

The low scores obtained by all participating algorithms show648

that sub-acute ischemic stroke lesion segmentation is a very dif-649

ficult task. This is furthermore supported by the high inter-rater650

variations obtained, an observation that has been made before:651

Neumann et al. (2009) report median inter-rater agreement of652

DC = 0.78 and HD = 23.4 mm over 14 subjects and 9 raters653

and Fiez et al. (2000) volume differences of 18 ± 16%.654

6.1. The most suitable algorithm and the remaining challenges655

The benchmark results were reviewed to identify the type656

of algorithm most suitable for sub-acute ischemic stroke le-657

sion segmentation, but no definite winner could be determined.658

While there are clear methodological differences between the659

submitted methods, the same methodological approach (used in660

different algorithms) may lead to substantially different perfor-661

mance. We were not even able to determine clear performance662

differences between types of approaches: The two statistically663

equally well performing winners include one machine learning664

algorithm based on deep learning (UK-Imp2 with a convolu-665

tional neural network (CNN)) and one non-machine learning666

approach (CN-Neu with fuzzy C-means). We have to conclude667

that many of the participating algorithms are equally suited and668

that the devil is in the detail. This finding is supported by the669

wide spread of performances for random forest (RF) methods,670

including the third and the next to last position in the ranking.671

Adaptation to the task and tuning of the hyperparameters is the672

key to good results. An observation made is that the three win-673

ners all use a combination of two algorithms, possibly compen-674

sating the weak points of one with the other.675

All participating methods showed good generalization abili-676

ties regarding the second rater. Since the inter-rater variability677

is high, we can assume that even the machine learning algo-678

rithms did not suffer from overfitting or, in other words, man-679

aged to avoid the inter-rater idiosyncrasies. Another explana-680

tion could be that the differences between the two raters fall into681

regions where little image information supports the presence of682

lesions.683

Quite contrary, not a single algorithm adapted well to the684

second medical center data. Differences in MRI acquisition pa-685

rameters and machine dependent intensity variations are known686

to pose a challenge for all automatic image processing meth-687

ods (Han et al., 2006). Seemingly, the center-dependent differ-688

ences are difficult to learn or model. Regrettably, we did not689

have enough second center data in the testing dataset to draw a690
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conclusive picture as the observed high variations might equally691

be caused by the considerably smaller lesion sizes in the second692

center dataset or other factors not attributable to multi-center693

variations (Jovicich et al., 2009). Special attention should be694

paid to this point when developing applications.695

Cases for which all methods obtained good results show696

mostly large and well delineated lesions with a strong FLAIR697

signal while small lesions with only a slightly hyperintense698

FLAIR support posed difficulties. Surprisingly, quite a number699

of algorithms have trouble differentiating between sub-acute700

stroke lesions and periventricular WMHs despite the fact that701

the latter shows an isointense DWI signal. This might be at-702

tributable to the strongly hyperintense DWI artifacts and often703

inhomogeneous lesion appearance, reducing the methods’ con-704

fidence in the DWI signal. It is hard to judge whether these find-705

ings hold true for other state-of-the-art methods because most706

publications provide only limited information and discussions707

on the particularities of their performance or failure scenarios.708

None of our collected lesion characteristics was found to ex-709

hibit a significant influence on the results (Table 8): The lesion710

volume correlates significantly with the scores, but the DC is711

known to reach higher values for larger volumes. The apparent712

performance differences in the presence of haemorrhages and713

the dependency on laterality could both be explained by differ-714

ences in the respective group’s lesion sizes. To investigate com-715

binations of characteristics with, e.g., multifactorial ANOVAs,716

a larger number of cases would be required.717

The conclusions drawn here are meant to be general and valid718

for most of the participating methods. A method-wise discus-719

sion is out of the scope of this article. Any interested reader720

is invited to download the participants’ training dataset results721

and perform her/his own analysis to test whether these findings722

hold true for a particular algorithm.723

6.2. Recommendations and limitations724

When developing new methods, no particular algorithm725

should be excluded a-priori. Instead, the characteristics of726

stroke lesion appearances, their evolution, and the observed727

challenges should be studied in detail. Based on this informa-728

tion, new solutions targeting the specific problems can be de-729

veloped. A specific algorithm can then be selected depending730

on how well the envisioned solutions can be integrated. Where731

possible, the strength of different approaches should be com-732

bined to counterbalance their weaknesses.733

Evaluation should never be solely conducted on a private734

dataset as the variation between the cases is too large for a small735

set to compensate for all of them and, hence, renders any fair736

comparison impossible. We believe that with SISS we supplied737

a testing dataset which suitably reflects the high variation in738

stroke lesions characteristics and encompassed the complexity739

of the segmentation task.740

Special attention should be put on the adaptation to second741

center data, which proved to be especially difficult. One could742

either concentrate on single-center solutions, try to develop a743

method that can encompass the large inter-center variations, or744

aim for an approach that can be specifically adapted. The whole745

subject requires further investigation and should not be handled746

lightly.747

Considering that multiple complete failures were exhibited,748

it would be interesting to develop solutions that allow automatic749

segmentation algorithms to signal a warning when they assume750

to have failed on a segmentation. This problem is related to751

multi-classifier competence, which few publications have dealt752

with to date (Woloszynski and Kurzynski, 2011; Galar et al.,753

2013).754

Label fusion (see Sec. 3.5) and automatic quality rating may755

be a potential avenue to compensate for different shortcom-756

ings of multiple algorithms that have been applied to the same757

data. We found that up to some degree the SIMPLE algo-758

rithm (Langerak et al., 2010) was able to improve over the av-759

erage participants’ results by automatically assigning a higher760

weight to the respective algorithm that performed best for a761

given image. The weights obtained with the SIMPLE algorithm762

for each method may be used as an a priori selection of effective763

algorithms in the absence of manual segmentations. There is,764

however, a risk of a negative influence of multiple failed seg-765

mentations that are correlated as evident by the generally lower766

accuracy of the STAPLE fusion (tables 7 and 9).767

Physicians and clinical researchers should not expect a fully768

automatic, reliable, and precise solution in the near future; the769

task is simply too complex and variable for current algorithms770

to solve. Instead, the findings of this investigation can help771

them to identify suitable solutions that can serve as support772

tools: In particular clearly outlined, large lesions are already773

segmented with good results, which are usually tedious to out-774

line by hand. For smaller and less pronounced lesions the man-775

ual approach is still recommended. Furthermore, they should776

be aware that individual adaptations to each data source are777

most likely required - either by tuning the hyperparameters or778

through machine learning.779

7. Discussion: SPES780

All the best ranking methods show high average DC, low781

ASSD and only minimal STD, denoting accurate and robust re-782

sults. A linear regression analysis furthermore revealed a good783

volume fit for the best methods (CH-Insel: r = 0.87 and DE-784

UzL: r = 0.93). We can say that reliable and robust perfusion785

lesion estimation from acute stroke MRI is in reach. For a fi-786

nal answer, a thorough investigation of the inter- and intra-rater787

scores would be required, which lies out of the scope of this788

work.789

In clinical context a Tmax thresholding at > 6s was estab-790

lished to correlate best with other cerebral blood flow mea-791

sures (Takasawa et al., 2008; Olivot et al., 2009b) and final792

lesion outcome (Olivot et al., 2009a; Christensen et al., 2010;793

Forkert et al., 2013). It is already used in large studies (Lans-794

berg et al., 2012). We started out with the same method when795

creating the ground truth for SPES, but followed by consid-796

erable human correction. The comparison against the simple797

thresholding (Table 9, second to last row) hence gives an idea of798

the intervention in creating the ground truth. Compared against799

the participating methods, it becomes clear that these managed800
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to capture the physicians intention when segmenting the perfu-801

sion lesion quite well and that simple thresholding might not802

suffice.803

An improved version proposed by Straka et al. (2010), where804

binary objects smaller than 3 ml are additionally removed, leads805

to better results (Table 9, last row) than simple thresholding but806

still far from SPES’ algorithms. Thresholding is clearly not a807

suitable approach for penumbra estimation.808

The discrepancy between the relatively good results reported809

by Olivot et al. (2009a), Christensen et al. (2010) and Straka810

et al. (2010) and the poor performance observed in this study811

can be partially explained by the different end-points (expert812

segmentation on PWI-MRI vs. follow-up FLAIR/T2), the dif-813

ferent evaluation measures (DC/ASSD vs. volume similarity),814

and the different data. This only serves to highlight the need for815

a public evaluation dataset. From an image processing point of816

view, the volume correlation is not a suitable measure to eval-817

uate segmentations as it can lead to good results despite com-818

pletely missed lesions.819

7.1. The most suitable algorithm and the remaining challenges820

Both of the winning methods are based on machine learning821

(RFs) and both additionally employ expert knowledge (e.g. a822

prior thresholding of the Tmax map). Their results are signifi-823

cantly better than those of all other teams. The other methods in824

order of decreasing rank are: another RF method, a modeling825

approach, a rule based approach, another modeling approach,826

and a CNN.827

Although the number of participating methods is too small828

to draw a general conclusion, the results suggest that RFs in829

their various configurations are highly suitable algorithms for830

the task of stroke penumbra estimation. Furthermore, they are831

known to be robust and allow for a computational effective ap-832

plication, both of which are strong requirements in clinical con-833

text.834

An automated method has to fulfill the strict requirements of835

clinical routine. Since time is brain when treating stroke, it has836

to fit tightly into the stroke protocol, i.e., is restricted to a few837

minutes of runtime (Straka et al. (2010) state ±5min as an upper838

limit). With 6min (CH-Insel) and 20sec (DE-UzL), including839

all pre- and post-processing steps, the two winning methods fit840

the requirements, DE-UzL even leaving room for overhead.841

7.2. Recommendations and limitations842

New approaches for perfusion estimation should move away843

from simple methods (e.g. rule-based or thresholding). These844

are easy to apply, but our results indicate that they cannot cap-845

ture the whole complexity of the problem. Machine learning,846

especially RFs, seem to be more suitable for the task: They847

can model non-linear functional relationship between data and848

desired results that a simpler approach cannot. Domain knowl-849

edge is likely required to achieve state-of-the-art results as the850

Tmax map thresholding of the two winning methods indicates.851

Evaluation should in any case be performed via a combination852

of suitable, quantitative measures. Simple volume difference or853

qualitative evaluation are of limited expressiveness and render854

the presented results incomparable. Where possible, the evalua-855

tion and training data should be publicly released. Finally, it has856

to be kept in mind that the segmentation task is a time-critical857

one and application times are always to be reported alongside858

the quantitative results.859

The presented algorithms are close to clinical use. However,860

intensive work is further needed to increase their robustness for861

the variety of confounding factors appearing in clinical practice.862

In this direction, a clear direct improvement seems to be the863

incorporation of knowledge regarding collateral flow, which is864

also used in the clinical workflow to stratify selection of patient865

treatment. It remains to be shown that the diffusion lesion can866

be segmented equally well and whether the resulting perfusion-867

diffusion mismatch agrees with follow-up lesions. To this end, a868

benchmark with manually segmented follow-up lesions would869

be desirable.870

SPES suffers from a few limitations: While MCA strokes are871

most common and well suited for mechanical reperfusion thera-872

pies (Kemmling et al., 2015), the restriction to low-noise MCA873

cases limits the result transfer to clinical routine. The gener-874

ality of the results is additionally reduced by providing only875

single-center, single-ground truth data. Finally, voxel-sized er-876

rors in the ground truth prevented the evaluation of the HD,877

which would have provided additional information.878

8. Conclusion879

With ISLES, we provide an evaluation framework for the fair880

and direct comparison of current and future ischemic stroke le-881

sion segmentation algorithms. To this end, we prepared and re-882

leased well described, carefully selected, and annotated multi-883

spectral MRI datasets under a research license; developed a884

suitable ranking system; and invited research groups from all885

over the world to participate. An extensive analysis of 21 state-886

of-the-art methods’ results presented in this work allowed us to887

derive recommendations and to identify remaining challenges.888

We have shown that segmentation of acute perfusion lesions in889

MRI is feasible. The best methods for sub-acute lesion segmen-890

tation, on the other hand, still lack the accuracy and robustness891

required for an immediate employment. Second-center acqui-892

sition parameters and small lesions with weak FLAIR-support893

proved the main challenges. Overall, no type of segmentation894

algorithm was found to perform superior to the others. What895

could be observed is that approaches using combinations of896

multiple methods and/or domain knowledge performed best.897

A valuable addition to ISLES would be a similarly organized898

benchmark based on CT image data, enabling a direct com-899

parison between the modalities and the information they can900

provide to segmentation algorithms.901

For the next version of ISLES, we would like to focus on902

the acute segmentation problem from a therapeutical point of903

view. By modeling a benchmark reflecting the time-critical de-904

cision making processes for cerebrovascular therapies, we hope905

to promote the transfer from methods to clinical routine and906

further the exchange between the disciplines. A multi-center907

dataset with hundreds of cases will allow the participants to de-908

velop complex solutions.909
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Appendix A. Participating algorithms910

This section includes short descriptions of the participating911

algorithms. For a more detailed description please refer to the912

workshop’s postproceeding volume (Crimi et al., 2016) or the913

challenge proceedings (Maier et al., 2015a).914

Used abbreviations are: white matter (WM), gray matter915

(GM), cerebral spinal fluid (CSF), random forest (RF), ex-916

tremely randomized trees (ET), contextual clustering (CC),917

gaussian mixture models (GMM), convolutional neural net-918

work (CNN), Markov Random Field (MRF), Conditional Ran-919

dom Field (CRF) and expectation maximization (EM).920

Appendix A.1. – UK-Imp1 (Liang Chen et al.)921

We propose a multi-scale patch-based random forest algo-922

rithm for sub-acute stroke lesion segmentation. In the first step,923

we perform an intensity normalization under the exclusion of924

outliers. Second, we extract features from all images: Patch-925

wise intensities of each modality are extracted at multiple scales926

obtained with Gaussian smoothing. We parcellate the whole927

brain into three parts, including top, middle, and bottom. To928

keep an equilibrated class balance in the training set, only a929

subset of background patches is samples from locations all over930

the brain. Subsequently, we train three standard RF (Breiman,931

2001) classifiers based on the patches selected from three parts932

of the brain. Finally, we perform some postprocessing oper-933

ations, including smoothing the outputs of the RFs, applying934

a threshold, and performing some morphological operations to935

obtain the binary lesion map.936

Appendix A.2. – DE-Dkfz (Michael Götz et al.)937

The basic idea of this approach is that a single classifier might938

not be able to learn all possible appearances of stroke lesions.939

We therefore use ‘Input-Data Adaptive Learning’ to train an in-940

dividual classifier for every input image. The learning is done941

in two steps: First, we learn the similarity between two images942

to be able to find similar images for unseen data. We define the943

similarity between two images as the DC that can be achieved944

by a classifier trained on the first image with the second im-945

age. Neighborhood Approximation Forests (NAF) (Konukoglu946

et al., 2013) are used to predict similar images for images with-947

out a ground-truth label (e.g. without the possibility to calculate948

the DC). We use first-order statistic description of the complete949

images as features for the learning algorithm. While the first950

step is done offline, the second step is done online, when a new951

and unlabeled image should be segmented. A specific, voxel-952

wise classifier is trained from the closest three images, selected953

by the previous trained NAF. For the voxel classifier we use954

ETs (Geurts et al., 2006) which incorporate DALSA to show955

the general applicability of our approach (Goetz et al., 2016). In956

addition to the intensity values we use Gaussian, Difference of957

Gaussian, Laplacian of Gaussian (3 directions), and Hessian of958

Gaussian with Gaussian sigmas of 1, 2, 3mm for every modality,959

leading to 82 features per voxel.960

Appendix A.3. – FI-Hus (Hanna-Leena Halme et al.)961

The method performs lesion segmentation with a RF algo-962

rithm and subsequent CC (Salli et al., 2001). We utilize the963

training data to build statistical templates and use them for cal-964

culation of individual voxel-wise differences from the voxel-965

wise cross-subject mean. First, all image volumes are warped to966

a common template space using Advanced Normalization Tools967

(ANTS). Mean and standard deviation over subjects are calcu-968

lated voxel-by-voxel, separately for T1, T2, FLAIR and DWI969

images; these constitute the statistical templates. The initial le-970

sion segmentation is calculated using RF classification and 16971

image features. The features include normalized voxel inten-972

sity, spatially filtered voxel intensity, intensity deviation from973

the mean specified by the template, and voxel-wise asymme-974

try in intensities across hemispheres, calculated separately for975

each imaging sequence. For RF training, we only use a ran-976

dom subset of voxels in order to decrease computational time977

and avoid classifier overfitting, As a last phase, the lesion prob-978

ability maps given by the RF classifier are subjected to CC to979

spatially regularize the segmentation. The CC algorithm takes980

the neighborhood of each voxel into account by using a Markov981

random field prior and iterated conditional modes algorithm.982

Appendix A.4. – CA-McGill983

The authors of this method decided against participat-984

ing in this article. A description of their approach can985

be found in the challenge’s proceedings on http: // www.986

isles-challenge. org/ ISLES2015/987

Appendix A.5. – UK-Imp2 (Konstantinos Kamnitsas et al.)988

We developed an automatic segmentation system, based on989

a 11-layers deep, multi-scale, 3D CNN. The network classifies990

voxels after processing a multi-modal 3D patch around them.991

To achieve efficient processing of greater image context, we de-992

veloped a network architecture with two parallel convolutional993

pathways that processes the image at different scales. To train994

our system we build upon the work in Urban et al. (2014) and995

form batches with large image segments, equally sampled from996

the two classes. We exploit our network’s fully convolutional997

nature to densely train on multiple voxels in the central part of998

the segments. By utilizing small 33 kernels that lead to deeper999

architectures with less trainable parameters, as well as adopt-1000

ing Dropout, Batch Normalization (Ioffe and Szegedy, 2015)1001

and augmenting the database using reflection along the sagit-1002

tal axis, we heavily regularize our network and show that it is1003

possible to train such a deep and wide network on a limited1004

database. Training our CNN takes approximately one day on a1005

GeForce GTX Titan Black, while inference on a brain volume1006

requires 3 minutes. We applied only minimum preprocessing,1007

normalizing the modalities of each patient to zero mean and1008

unit variance. For our final submission in the testing phase of1009

the challenge, the outputs of 3 similar CNNs were averaged,1010

to reduce noise caused by randomness during training. Addi-1011

tionally, we implemented a 3D, densely connected CRF by ex-1012

tending the work of Krähenbühl and Koltun (2012), which can1013

efficiently postprocess a multi-modal scan in 2 minutes. Finally,1014

connected components smaller than 20 voxels are eliminated.1015
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Appendix A.6. – US-Jhu (John Muschelli)1016

As rigid registration may not correct local differences be-1017

tween spatial locations across sequences, we re-register images1018

to the FLAIR using Symmetric Normalization (Avants et al.,1019

2008). We normalize the voxel intensities to a z-score using the1020

20% trimmed mean and standard deviation from each image.1021

To train an algorithm, we create a series of predictors, including1022

the x-y flipped voxel intensity, local moments (mean, sd, skew,1023

kurtosis), and the images smoothed with large Gaussian filters.1024

We trained a RF from 9 images, downsampled to 300, 000 vox-1025

els, with the manual segmentation as the outcome (Breiman,1026

2001). From the RF, we obtained the probability of lesion and1027

determined the threshold for these probabilities using the out-1028

of-sample voxels from the training images, optimizing for the1029

DC.1030

Appendix A.7. – SE-Cth (Qaiser Mahmood et al.)1031

The proposed framework takes the multi-spectral MRI brain1032

images as input and includes two preprocessing steps: (1) Cor-1033

rection of bias field using the N3 bias field correction algo-1034

rithm (Sled et al., 1998) and (2) normalization of the inten-1035

sity values of each MRI modality to the interval [0, 1], done1036

by applying linear histogram stretching. For each voxel of1037

multi-spectral MRI images, the following set of meaningful fea-1038

tures is extracted: intensities, smooth intensities, median inten-1039

sities, gradient, magnitude of the gradient and local entropy. All1040

these features were normalized to zero mean and unit deviation.1041

These features are then employed to train the RF (Criminisi and1042

Shotton, 2013) classifier and segment the sub-acute ischemic1043

stroke lesion. In this work, we set the RF parameters to: num-1044

ber of trees=150 and depth of each tree=50. A total of 999, 0001045

data samples (i.e. 37, 000 randomly selected from each training1046

case) is used to train the RF classifier. Finally, the postprocess-1047

ing is performed using dilation and erosion operations in order1048

to remove small objects falsely classified as stroke lesion.1049

Appendix A.8. – US-Odu (Syed M S Reza et al.)1050

This work proposes fully automatic ischemic stroke lesion1051

segmentation in multispectral brain MRI by innovating on our1052

prior brain tumor segmentation work (Reza and Iftekharuddin,1053

2014). The method starts with the standard MRI preprocess-1054

ing steps: intensity inhomogeneity correction and normaliza-1055

tion. Next step involves two primary sets of feature extraction1056

from T1, T2, FLAIR and DWI imaging sequences. The first set1057

of features includes the pixel intensities (IFL, IT1, IT2, IDWI) and1058

differences of intensities (d1 = IFL − IT1, d2 = IFL − IT2, d3 =1059

IFL − IDWI) that represents the global characteristics of brain1060

tissues. In the second set, local texture features such as piece-1061

wise triangular prism surface area, multi-fractal Brownian mo-1062

tion (Islam et al., 2013) and structure tensor based local gradi-1063

ents are extracted to capture the surface variation of the brain1064

tissues. We use a mutual information based implementation1065

of minimum redundancy maximum relevance feature ranking1066

technique and choose the 19 top ranked features. A classical1067

RF classifier is employed to classify the brain tissues as lesion1068

or background. Finally, a binary morphological filter is used1069

to reduce the false positives from the original detections. We1070

observe a few remaining false positives that compromise the1071

overall performance. Our future works will include the study1072

of more effective features, sophisticated feature selection tech-1073

niques and an effective false positive reduction technique.1074

Appendix A.9. – TW-Ntust (Ching-Wei Wang et al.)1075

A fully automatic machine learning based stroke lesion three-1076

dimensions segmentation system is built, which consists of a1077

feature selection method, a multi-level RF model and a simple1078

3D registration approach. Only the FLAIR sequence was used1079

and 275 features, which can be categorized into 24 types, are1080

extracted for building RF models. To deal with the three dimen-1081

sional data, a multi-RF model is developed and for stacks of five1082

slices in the Z direction, a random forest model is built. The RF1083

model generates probability maps. After obtaining the potential1084

candidates from the RFs, we build a three-dimensional registra-1085

tion framework with backward and forward searching (Wang1086

et al., 2015). It is applied to generate optimal three-dimensional1087

predictions and too remove larger outliers. The system finds1088

the largest object among all stacks and uses the stack with the1089

largest object as the referenced stack. Then, the system per-1090

forms backward and forward registration to maintain spatial1091

consistency and remove the objects with no overlap to the de-1092

tected objects in the neighboring stacks.1093

Appendix A.10. – CN-Neu (Chaolu Feng)1094

We propose a framework to automatically extract ischemic1095

lesions from multi-spectral MRI images. We suppose that the1096

input images of different modalities have already been rigidly1097

registered in the same coordinate system and non-brain tissues1098

have already been removed from the images (Gao et al., 2014).1099

Lesion segmentation is then performed by the proposed frame-1100

work in three major steps: 1) preliminary segmentation, 2) seg-1101

mentation fusion, and 3) boundary refinement. No training1102

data is needed and no preprocessing and postprocessing steps1103

involved. In the proposed framework, MRI images of each1104

modality are first segmented into brain tissues (WM, GM and1105

CSF) and ischemic lesions by weighting suppressed fuzzy c-1106

means. Preliminary lesion segmentation results are then fused1107

among all the imaging modalities by majority voting. The judge1108

rule is that candidate voxels are regarded as lesions only if 1)1109

they are considered as brain lesions in FLAIR images, and 2)1110

they are viewed as brain lesions in more than 1 imaging modal-1111

ity beside FLAIR. The fused segmentation results are finally1112

refined by a three phase level set method. The level set formu-1113

lation is defined on multi-spectral images with the capability of1114

dealing with intensity inhomogeneities (Feng et al., 2013).1115

Appendix A.11. – BE-Kul1 (Tom Haeck et al.)1116

We present a fully-automated generative method that can be1117

applied to individual patient images without need for a train-1118

ing data set. An EM-approach is used for estimating intensity1119

models (GMMs) for both normal and pathological tissue. The1120

segmentation is represented by a level-set that is iteratively up-1121

dated to label voxels as either normal or pathological, based on1122
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which intensity model explains the voxels’ intensity the best.1123

A convex level-set formulation is adopted (Goldstein et al.,1124

2009), that eliminates the need for manual initialization of the1125

the level-set. For each iteration to update the level-set, a full1126

EM-estimation of the GMM parameters is done.1127

As a preprocessing step, spatial priors of WM, GM and CSF1128

are non-rigidly registered to the patient image. The prior infor-1129

mation is relaxed by smoothing the spatial priors with a Gaus-1130

sian kernel. For SPES, we make use of the T2-weighted and1131

TTP-weighted MR images and for SISS the diffusion weighted1132

and FLAIR-weighted MR images. For SPES, the modalities1133

are used in a completely multivariate way, i.e., with bivariate1134

Gaussian models. For SISS, the modalities are segmented sep-1135

arately and a voxel is only labeled as lesion if it is a lesion in1136

both modalities.1137

Appendix A.12. – CA-USher (Francis Dutil et al.)1138

We propose a fully-automatic CNN approach which is accu-1139

rate while also being computationally efficient, a balance that1140

existing methods have struggled to achieve. We approach the1141

problem by solving it slice by slice from the axial view. The1142

segmentation problem is then treated by predicting the label of1143

the center of all the overlapping patches. We propose an archi-1144

tecture with two pathways: one which focuses on small details1145

of the tissues and one focusing on the larger context. We also1146

propose a two-phase patch-wise training procedure allowing us1147

to train models in a few hours and to account for the imbal-1148

anced classes. We first train the model with a balanced dataset1149

which allows us to learn features impartial to the distribution1150

of classes. We then train the second phase by only training on1151

the classification layer with a distribution closer to the ground1152

truth’s. This way we learn good features and introduce the cor-1153

rect class prior to the model. Fully exploiting the convolutional1154

nature of our model also allows to segment a complete brain1155

image in 25 seconds. To test the ability of CNNs to learn useful1156

features from scratch, we employ only minimal preprocessing.1157

We truncate the 1% highest and lowest intensities and applied1158

N4ITK bias correction. The input data is then normalized by1159

subtracting the channel mean and dividing by its standard de-1160

viation. A postprocessing method based on connected compo-1161

nents is also implemented to remove small blobs which might1162

appear in the predictions.1163

Appendix A.13. – DE-UzL (Oskar Maier et al.)1164

We propose a novel voxel-wise RF classification method1165

with features chosen to model a human observers discrimina-1166

tive criteria when segmenting a brain lesion. They are based on1167

intensity, hemispheric difference, local histograms and center1168

distances as detailed in (Maier et al., 2015c, 2016). First, the al-1169

ready co-registered, isotropic voxel-spacing and skull-stripped1170

sequences are preprocessed with bias field correction and inten-1171

sity range standardization (Maier, 2016) (SISS) resp. the Tmax1172

capped at 10s (SPES). A total of 1, 000, 000 voxels are ran-1173

domly sampled, keeping each case’s class ratio intact (i.e. im-1174

balanced). With this training set, 50 trees are trained using Gini1175

impurity and
√

163 features for node optimization. For SISS,1176

the a-posteriori forest probability map is thresholded at 0.4 and1177

objects smaller than 1ml removed. For SPES, the threshold is1178

0.35 and only the largest connected component is kept. Both1179

are followed by an hole closing in sagittal slices. The proposed1180

method was equally successfully applied to BRATS challenge1181

data (Maier et al., 2016), underlining the generality of our ap-1182

proach.1183

Appendix A.14. – BE-Kul2 (David Robben et al.)1184

A single segmentation method for both the SISS and SPES1185

sub-challenges is proposed (Robben et al., 2016). First, all1186

data is preprocessed, including bias-field correction, linear in-1187

tensity standardization, and affine registration to MNI space.1188

Then, each voxel is probabilistically classified as lesion or1189

background within the native image space. The classifier con-1190

sists of 3 cascaded levels, in which each level extends the fea-1191

ture set and uses a more complex extremely randomized for-1192

est (Geurts et al., 2006). The first level only uses the T1 inten-1193

sity. The second level uses all modalities, smoothed in a local1194

neighborhood at different radii, as well as voxel coordinates in1195

atlas space. The third level additionally uses the probabilities1196

estimated in level 2, smoothed locally. Classifier hyperparam-1197

eters were tuned using 5-fold cross-validation. Testing data is1198

preprocessed similarly and the voxelwise probabilities are pre-1199

dicted by the classifier. A technique to select the threshold that1200

optimizes the DC is presented and applied to the predicted prob-1201

ability map in order to obtain the final binary segmentation.1202

Appendix A.15. – DE-Ukf (Elias Kellner et al.)1203

In almost all cases of acute embolic anterior circulation1204

stroke only one hemisphere is affected. We exploit this fact1205

to (i) restrict the segmentation to only the affected hemisphere1206

and (ii) to preselect the potential lesion by comparing local1207

histograms of the affected side with the contralateral counter-1208

part used as reference. Our approach is based on the evalua-1209

tion of just the Tmax and ADC-maps. First, we automatically1210

find the plane which separates the left and right hemisphere by1211

co-registration with a mirrored Tmax-image, and identify the1212

affected hemisphere as the one with the higher median value.1213

For each voxel at position ~x, a normalized, regional histogram1214

H(~x, ti) is calculated in a 20×20×12mm3 neighborhood with a1215

bin-width of ti+1−ti = 1.5s. The difference to the corresponding1216

contralateral histogram H̃(~x, ti), taken from the mirrored part of1217

the brain is calculated via D(~x) = 1/2
∑

i |H(~x, ti) − H̃(~x, ti)|.1218

The resulting map of histogram differences is thresholded by1219

0.5 to find the regions with unusual Tmax values. This pre-1220

selection is thresholded with the generally accepted value of1221

Tmax > 6s. The histogram neighborhood size and the morpho-1222

logical operation parameters are globally fine-tuned based on1223

the training dataset. To clean the mask, morphological erosion1224

and dilation is applied. Finally, the segmentation is multiplied1225

with ADC > 1700mm2/s to remove CSF voxels.1226

Appendix A.16. – CH-Insel (Richard McKinley et al.)1227

The model is trained only using data from the SPES dataset;1228

no additional data is used. The method makes use of all seven1229
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imaging modalities. Before learning takes place, the follow-1230

ing preprocessing steps are employed: TMax values are cen-1231

sored below zero and above 100, and all imaging modalities are1232

then scaled to lie in the interval [0, 256]. Simple image texture1233

features, based on those first used in Porz et al. (2014) are ex-1234

tracted from each imaging modality. The resulting data points1235

are used to train a decision forest model which assigns to each1236

volume element a label indicating if it should be considered part1237

of the perfusion lesion. The training algorithm is a modification1238

of RF (Breiman, 2001), in which bootstrapping of the training1239

data is performed first at the patient level, and only then at the1240

voxel level. This avoids the effects of patient-level clustering1241

and leads to out-of-sample patients. This out-of-sample data1242

is then used to empirically discover a threshold at which the1243

DC of the segmentation is maximized, avoiding the need for1244

holding out training data to tune the classifier. After segment-1245

ing with this threshold, no further postprocessing was applied.1246

The method takes approximately six minutes to segment a new1247

case.1248

Appendix B. Ranking schema1249

Our ranking system builds on the concept that a rank re-1250

veals only the direction of a relationship between two items1251

(i.e. higher, lower, equal), but not its magnitude. After ob-1252

taining from each participating team the segmentation results1253

for each case, the following steps are executed:1254

1. Compute the DC, ASSD & HD values for each case1255

2. Establish each team’s rank for DC, ASSD & HD separately for each case1256

3. Compute the mean rank over all three evaluation measures/case to obtain1257

the team’s rank for the case1258

4. Compute the mean over all case-specific ranks to obtain the team’s final1259

rank1260

Graphically, the schema looks like displayed in Fig. B.11.1261

The outcome of the procedure is a final rank (real number) for1262

each participant, which defines its standing in the leaderboard1263

relative to all others. For SISS, with two ground truth sets for1264

the testing dataset, their respective final ranks are averaged. For1265

SPES, only the DC and the ASSD were used.1266

This approach can be applied to any number of measures,1267

independent of their range, type or direction. Its outcome de-1268

notes only the differences between algorithms and hence serves1269

its purpose. For any interpretation of the results, the distinct1270

evaluation measure values obtained have to be considered too.1271

A challenge with winners requires an absolute ranking; an1272

ongoing benchmark does not. For the online, ongoing leader-1273

board, the rank is not computed. Rather, each user is invited to1274

sort the result table according to their favorite evaluation mea-1275

sure.1276

Failed cases and resolving ties. In one step of our algorithm,1277

we have to rank the performance of each team on one case re-1278

garding a single evaluation metric. Such a situation can lead to1279

ties, which have to be handled specially. We chose to decorate1280

both tied teams with the upper rank and leaving the following1281

empty (see Table B.10 for an example).1282

Table B.10: Example of resolving ties for ISLES.

Team DC

T-A 0.33
T-B 0.33
T-C 0.50
T-D 0.33
T-E 0.31

(a) Before...

Rank Team

1 T-C
2 T-A, T-B, T-D
3
4
5 T-E

(b) ...after.

This behavior has an interesting effect for very difficult cases,1283

where most teams fail to produce a valid segmentation, as can1284

be seen in the example of Table B.11.1285

Table B.11: Tie resolving for difficult cases.

Team DC

T-A 0.00
T-B 0.00
T-C 0.10
T-D 0.00
T-E 0.00

(a) Before...

Rank Team

1 T-C
2 T-A, T-B, T-D, T-E
3
4
5

(b) ...after.

Thus, difficult cases do not alter the mean as they would do1286

when simply averaging, e.g., the DC values over all cases. In-1287

stead, only the performance relative to all other algorithms is1288

compared, resulting in a more expressive ranking.1289

Beside resolving ties, we decided to introduce a concept of1290

failed cases: When faced with (1) a missing segmentation mask1291

or (2) a DC value of 0.00 (i.e. no overlap at all), the concerned1292

case was declared failed and all metric evaluation values sub-1293

sequently set to infinity. Combined with the employed ranking1294

approach and above described treatment of ties, this allows to1295

incorporate missing segmentations in the ranking in a natural1296

and fair manner. It could be argued that a DC of 0.00 could1297

well mean that another part of the brain has been segmented.1298

But the case has nevertheless to be considered a failed one, as1299

the target structure has not been detected. Not declaring the1300

case a failure would lead methods submitting a single random1301

voxel segmentation to be ranked higher than an empty segmen-1302

tation mask.1303

Notes

– CA-USher encountered a bug in their implementation.
Their new results can be found on www.smir.ch/ISLES/

Start2015.
– UK-Imp2 will make their software publicly avail-

able at https://biomedia.doc.ic.ac.uk/software/

deepmedic/ in the hope that it facilitates research in related
problems.
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