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Direct Visuo-Haptic 4D Volume Rendering
using Respiratory Motion Models

Dirk Fortmeier, Student Member, IEEE, Matthias Wilms, Andre Mastmeyer, and Heinz Handels, Member, IEEE

Abstract—This article presents methods for direct visuo-haptic 4D volume rendering of virtual patient models under respiratory motion.
Breathing models are computed based on patient-specific 4D CT image data sequences. Virtual patient models are visualized in real-time
by ray casting based rendering of a reference CT image warped by a time-variant displacement field, which is computed using the motion
models at run-time. Furthermore, haptic interaction with the animated virtual patient models is provided by using the displacements computed
at high rendering rates to translate the position of the haptic device into the space of the reference CT image. This concept is applied to
virtual palpation and the haptic simulation of insertion of a virtual bendable needle. To this aim, different motion models that are applicable in
real-time are presented and the methods are integrated into a needle puncture training simulation framework, which can be used for simulated
biopsy or vessel puncture in the liver. To confirm real-time applicability, a performance analysis of the resulting framework is given. It is shown
that the presented methods achieve mean update rates around 2000 Hz for haptic simulation and interactive frame rates for volume rendering
and thus are well suited for visuo-haptic rendering of virtual patients under respiratory motion.

Index Terms—Visuo-haptics, Volume Rendering, Breathing motion, Needle insertion simulation

1 INTRODUCTION

Visuo-haptic simulation of needle insertion is an active field
of research. Its aim is to provide a virtual environment in
which a surgeon can train an intervention without harming
real patients or relying on costly and non-reusable tissue
phantoms. Scenarios that are often simulated are insertions
of needles into the liver [1], [2], [3] and the contained
vessels, into blood vessels for anesthetization or catheter
placement [4], [5] or prostate brachytherapy [6], [7].

To provide such a simulation, different components are
needed. The core problem is to provide a realistic model
of a patient and display this model in a convincing and
immersive virtual environment. For this, methods for visual
rendering as well as methods for the interaction with the
virtual patient model are needed. The latter generally is
carried out using a haptic input device that enables the user
to steer virtual tools and receive realistic force-feedback
simulated by a haptic algorithm.

The behavior of needles inserted in the abdominal re-
gion can be highly influenced by respiration-induced organ
motion. For instance, breathing influences and displaces
especially the shape of parts of the liver that are close to
the diaphragm. The displacement of the diaphragm close
to the liver can reach up to 5cm between full inspiration
and full expiration [8]]. Other organs as for instance the gall
bladder or intestines are affected in the same way. For some
needle intervention techniques, flexible needles are used
that bend under the influence of the deformed surrounding
tissue. In contrast, stiff needles influence the deformation of
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surrounding tissues and the breathing causes tilting of the
needle outside of the patient’s body. Both effects have to be
included in a realistic simulation of needle insertion.

Real-time simulation of breathing motion for the lung
has been performed by [9] for visualization purposes in
an augmented reality framework. A model for the motion
of abdominal organs is presented in [10], which is fast to
compute for organ surfaces and was suggested to support
radiotherapy by providing a real-time capable prediction of
tumor motion based on depth imaging of the patients skin.
In [1], [11], visuo-haptic simulation of respiratory motion
of a virtual patient model was presented for liver biopsy
and methods for parameter estimation for this simulation
are given in [12]], [13]. Another visuo-haptic simulation
approach is proposed in [2], where the motion of the
liver was integrated in an ultrasound simulation. Both
approaches are limited to a simplified model of respiratory
motion based on a sinusoidal displacement and do not
incorporate breathing effects in the modeling of haptic
forces. Similarly, [14] presents a simplified breathing model
based on a sinusoidal geometric transformations in a virtual
reality application for the visual simulation of angiography
without haptic interaction.

Visualization of medical imaging data in visuo-haptic
environments is typically performed by indirect volume
rendering, i.e. classical rasterization of polygonal surface
models of isosurfaces extracted from 3D image data. An-
other option is direct volume rendering, for which a thor-
ough overview of methods and implementation is given in
[15]. This method is especially suited for static volume data
as for example used in [2]. To introduce deformations of
the rendered volume images, methods for direct rendering
using unstructured meshes have been given by [16], [17]
and more recently by [18] and [19]. As for computation
of soft tissue behavior, mesh based approaches come with
different advantages as reduced computational load and
drawbacks as a complicated mesh generation procedure.
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Instead of using a mesh based approach, in this work,
we adapt the basic idea to use deformed rays during ray
casting [20], and use respiratory motion models to visualize
a globally deformed 3D CT image under breathing motion.

A central part of this work is about the insertion of
needles into soft tissue. Using the finite element method,
resulting deformations of tissue and interacting needle have
been presented i.a. in [6], [21], [22], [23] and [24]. Also,
haptic simulation of bending needles using the angular
spring method was used in [25], [26], which is supposed
to be an accurate simplification and is fast to compute.
Alternatives to this concept are elastic rod methods [27],
[28], as for instance used in [6]].

Nowadays, spatio-temporal 4D CT image data acquired
during free breathing [29] can be used to analyze the
patient-specific motion of internal structures caused by
respiration to improve radiation therapy of tumors in the
thorax and abdomen. Recently in this context, a lot of effort
has been put into the development of non-linear image
registration techniques that enable a precise estimation of
respiratory motion based on 4D image data. Furthermore,
the development of subsequent respiratory motion analysis
and modeling approaches [30] have been adressed. In this
work, those techniques are employed to enable highly real-
istic rendering of virtual patient models under respiratory
motion.

This work builds on a visuo-haptic framework [3] and
methods from image registration and modeling of respi-
ratory motion [31]], [32]. It contributes a novel real-time
capable method to display a virtual patient model under the
influence of breathing motion and integrates the breathing
motion into haptic algorithms. It introduces realistic models
that include natural variations of the breathing motion.
The key idea is to use a time varying displacement field
describing the breathing motion to modify the sampling
positions during ray casting for direct volume rendering
and use the displacement field to translate the haptic device
position into a reference space. In comparison to existing
methods, our visuo-haptic rendering approach enables di-
rect volume rendering, haptics, realistic models of complex
local breathing and models based on actual patient data in
a single framework.

The article is divided into three main parts: First, methods
for interactive visual and haptic rendering of a breathing
patient are introduced. These are based on a model of
respiration that is represented by a displacement field func-
tion, which is detailed in the second section. In the third
part, the methods are demonstrated and evaluated based
on an prototypical implementation of a needle insertion
intervention.

2 VISUO-HAPTIC RENDERING

A 4D CT data set usually consists of a sequence of 3D CT
images, which represent the patient’s anatomy at different
phases of a single breathing cycle. Therefore, a direct ap-
proach of using a 4D CT data set for a visuo-haptic simu-
lation would be to periodically step through the sequence
of CT images. However, this has major drawbacks: When
only rendering a single cycle of images (a single 4D CT

World space at t

Reference space

Figure 1: Schematic axial slice of a virtual patient model. For
each point in the world space, positions x can be mapped
to X in the static reference space and vice versa. Here, this
is demonstrated for a point on the surface of the breathing
patient and points along a needle path.

data set), no inter-cycle variations of the breathing motion
(e.g., breathing depth) can be represented. Additionally,
since the number of images is usually very low (usually
7-14 phases are reconstructed) compared to the length of a
breathing cycle (~2-7s), it is not possible to provide a frame
rate of at least 24 Hz for the visualization as needed by a
human observer to get the impression of a fluid animation.
The situation is even more delicate for haptic rendering,
where an update rate of at least 1000 Hz is required.
These requirements motivate new methods that can quickly
compute a visual and haptic representation for any given
time point in between the time points of the acquired image
sequence.

The utilized simulation framework is based on direct
visuo-haptic rendering, i.e. a volumetric voxel image is
used for visual and haptic rendering of a virtual patient.
Without a motion model, the virtual patient model is static.
In the following, the associated space to this state will be
called the reference space. Using a motion model and the
voxel image associated to the reference space for rendering
is a key idea of our methods. In this chapter, a function
wX,t) : Q@ = R3(Q C R3) that yields a displacement
for any given point X €  in the image domain and for
any simulation time point ¢ € R is used. This represents
a mapping of each position X in the reference space to
the corresponding point x in space and time of the virtual
world space as shown in Fig. [I} In general, this function is
required to be bijective, i.e. an inverse function u™!(x,?)
exists. A simple approxiation of this function to repre-
sent breathing motion would be a sinusoidal displacement
u(X,t) = (0,a-sin(t),0) ", where a is the maximal amplitude
in mm. This of course does not suffice to represent the
complex local motion of organs under respiratory breathing
in detail. An in-depth presentation of other possible motion
models follows in section [

2.1

Visual rendering of the patient image data deformed by
breathing motion is based on a ray casting volume ren-
dering method [15] with non-linear rays, for example used
in [20] where ray deflectors are used to locally bend the
rendering space. We build on this basic idea and adapt
it so each ray that is cast through the image volume can
be considered to be warped by a function representing the
breathing motion. Here, we perform the warping as follows.

Visual Rendering using Motion Fields
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For each sample position x on a viewing ray, the position
X = x 4+ u~!(x,t) in reference space could be computed
directly with the inverse displacement u~'(x,t), which is
not available for the motion models used. To solve this
problem, we combine ray casting and computation of the
inverse displacement on the fly: Starting from the camera
position, the sample position x in the world space and the
corresponding position along the warped viewing ray X
are iteratively updated as

X+ =

X-‘r

x+d 1)
xt —u(X +d,¢t) ()

while sampling along the viewing ray with ray direction
vector d and sample distance |/d||. This is inspired by
the fixed-point inversion approach from [33] and needs
further explanation. In [33], it is shown that for an invertible
displacement field, it is possible to compute the inverse by
applying an iterative algorithm for each element of the field.
In practice, we use Eq. (6) from [33] and substitute the
deformation fields by the corresponding terms including
the displacements, giving the sequence X, =x — u(X,,_1).
This corresponds to our Eq. [2|for a given and fixed location
xt. Instead of applying this algorithm several times for
the same point (the authors state that normally a number
smaller ten is sufficient), it is evaluated once for each ray
casting sampling position and the value from the previous
sampling position along the viewing ray is used as an initial
solution.

After trilinear interpolation of the volumetric reference
image data at x*, application of a transfer function fol-
lows for each sampling step. Label data defined in the
reference space are used for tagged volume rendering of
a deformed volume in the same fashion by using nearest
neighbor interpolation. In the same way, ray casting based
X-ray simulation and ultrasound imaging simulation is per-
formed. Multiplanar reformations (MPRs) are generated by
applying the fixed-point algorithm with several iterations
per point to compute the inverse at each sampling position
without ray traversal.

In our framework, it is possible to only use direct volume
rendering, but nevertheless the methods are applicable to
surface based rending as well and thus also interesting
for fully surface based simulation frameworks. Using the
function u(X,t), vertices of polygonal surface models can
be displaced and used to render surface models of organs.

2.2 Haptic Rendering for Virtual Palpation and Ultra-
sound Probing

Haptic rendering of virtual palpation and ultrasound prob-
ing is similar to our previous approaches [34]: Multiple
virtual contact nodes are placed on the surface of the
virtual tools and each of the positions x representing a
node is connected to a virtual proxy position p by a spring
to calculate friction forces. Structure repulsion forces are
calculated by non-linear functions relating palpation depth
to forces. To introduce breathing motion into the haptics
computation, the device position is transformed from the
world space to the reference space by the motion model.

Figure 2: Left: Needle path discretized by nodes p;, only
the tip node is adjusted during insertion. Right: Nodes
n; representing the discretized needle are connected to
proxies (red) by springs. These proxies are displaced by the
breathing motion (blue).

To achieve this, again the inversion scheme of [33] is
applied iteratively on the haptic device position x, giving
the position in reference space as Xt = x — u(X, ¢) in each
haptic rendering frame. Haptic force and torque compu-
tation then takes place in the reference space. Computing
the absolute orientation [35] for the set of proxy positions
and the set of proxy positions displaced by u(x,t) gives
a rotational transformation that can be used to translate
the resulting force back to the world space. In practice, we
found the angle of the rotation to be less than 5° and thus
it might be neglected.

To visualize local deformations at the palpation site, the
methods presented in [3] resp. [36] for the needle are
applied. Notice, that the resulting deformations and their
visualization do not affect the force output of the haptic
algorithms.

2.3 Haptic Rendering of Needle Insertion

For the modeling of needle insertion into soft tissue, several
methods exist. Here, we build on the needle insertion
algorithm presented in [3] and adapt it to enable curved
insertion paths. In this method, the soft tissue behavior is
modeled by linear springs, so no tetrahedral mesh is needed
as for example in [24].

During needle insertion, the needle algorithm uses two
sets of nodes to compute haptic forces based on breathing
motion (Fig. [2) and provide a visualization of the bended
needle:

o P ={p; € R3};<,<;: nodes representing the path of the

needle during insertion

o N ={n; € R} <<, nodes representing the complete

discretized needle
New path nodes are placed along the insertion path in the
reference space. Thus, the number of these nodes varies:

e |P| = 0: needle is outside the body,

¢ |P| = 1: needle tip is on the skin surface of the patient,

e |P| > 2: needle is inside the patient.

The nodes are equidistantly distributed along the insertion
path and their position does not change during insertion
except for the tip node, which is explained later. In Alg.
an overview of the haptic algorithm is given.

At first, the direction of the needle tip d; in the reference
space is computed (getTipOrientInRefSpace) by
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Algorithm 1 In each iteration of the haptic loop, the algo-
rithm computes new node positions P* and N as well as
the haptic force f and torque t.

: input: x < haptic device position
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No. Nodes  Force [N] Deflec. [mm] Diff. [mm]
15 0.5 8.6 -3.8
1.0 17.1 -8.8
25 0.5 13.2 0.7
1.0 25.8 -0.2
50 0.5 29.2 16.7
1.0 53.2 27.2

: input: X + old device position in reference space
. input: q < haptic device orientation

input: P < set of path nodes from prev. step
input: N < set of needle nodes from prev. step
d; + getTipOrientInRefSpace(P,N)

X x+u(X;t)

. Pt « updatePathNodes(P,X",d; )

:if (|[PT] =0) then

N7 + simpleNNodePlacement(x,q)
f+—0,t«<0

: else

N* < updateNNodes(PT, N, x,q)

f « computeForces(Pt, Nt x,X1)

t < computeTorque(Pt, Nt x,XT)

: end if

. return {N*t, Pt X" ft}

T e T o T e S G e G S
NS T2

and then d; = R7'r,,/ |R7'r,,|| with r,,, being the needle
tip node’s direction vector. Together with the position of
the haptic device tip in the reference space X, this is used
to update the set of path nodes (updatePathNodes). In
case the needle is outside the patient’s body, P remains
empty. On first contact with skin, a node is placed at
the contact position. In case the needle has entered the
patient’s body, a chain of nodes is placed as follows: The
tip node p; moves in direction d; in case X moves forward
relatively to its position from the previous iteration of the
algorithm or otherwise towards the node behind the tip. If
the distance Al = ||p;—1 — p;|| becomes smaller than 0.5-Ap
with Ap being the fixed spacing between path nodes, p;_:
is removed from the set. In case Al > 1.5- Ap, a new node
is placed on the line between the nodes in a way that its
distance to p;—; is Ap. For the tip node and newly placed
nodes, the material properties stiffness k;, cutting stiffness
coefficients a; ; and asj, cutting force f{"* and maximal
friction force R; are obtained for the position of the node
via transfer functions relating CT image data to material
properties or, if available, by using a labeling mask. To
simulate a cutting force, forward movement of the path tip
node is prohibited as long as the spring force connecting
device position and the path tip node in direction of the
needle is below the cutting force threshold:

ag Ad* + ay  Ad < i 4)

with Ad = (X — p;) - d; being the distance between device
position and path tip node. For ay; # 0, non-linear cutting
forces as measured for example in [37] can be produced.
Given these considerations, thus the path tip node is up-
dated by

Ad if Ad <0
0 elseif Eq.[lholds
+
Pr = Pt : Ad+v — /Y +72 elseifas; >0
Ad — s else

Table 1: Simulated deflection of the needle tip and differ-
ence to measurements for a 16 gauge needle. The stiffness
parameter has been tuned for 25 nodes.

cut

with Y1 = %% and Yo = ﬁ

As long as the needle is not in contact with the skin, no
forces have to be computed and no physical needle model
has to be employed to determine the needle node positions.
Instead, in this case these are placed along the ray defined
by haptic device position x and orientation quaternion q
(simpleNNodePlacement).

Otherwise, the positions of the needle nodes N are com-
puted by a discretized needle model implemented using the
Bullet Physics library [38], which uses a Projected Gauss-
Seidel solver. Each needle node is represented by a single
rigid body and connected to its successor by a ball and
socket joint and a rotational spring. The needle is forced
to comply to the insertion path in the following way. Each
pair of path and needle nodes representing a part of the
needle that is inside the tissue is connected by a spring
using the material stiffness k; of the path node. Except for
the tip node, the spring force is projected onto the plane
perpendicular to the needle tangent at the node.

The needle is discretized by 25 elements, which is a trade-
off between computation time and accuracy. Furthermore,
the Bullet based physics simulation of the needle is not run
only once per haptic simulation frame, but several times
with a fixed time step of 1 ms to faster reach a static state.
The actual number of iterations depends on the remaining
available processing time of the haptic frame.

We calibrated the stiffness for a 16 gauge needle with
a length of 150 mm: To this aim, we first measured the
deflection caused by a lateral force at the tip of a needle
fixed at the base for 0.5 N and 1.0 N resp., which we
found to be 12.5 mm resp. 26.0 mm. Then the stiffness
parameter for the rotational spring were adjusted to match
this measurements in the simulation using 25 nodes. For
a different number of elements, the resulting simulated de-
flection differ, see Tab.[1| In terms of convergence, we found
that in the calibration setup, the mean node movement
converges to a value below 107° mm after roughly 1200
iterations.

An additional spring is used to connect the base node
position n; of the needle with a position v to induce
bending to the needle in case the user angulates the haptic
device handle. This position is depending on the insertion
point of the needle in world space, which is s = p; +u(p1).
Given this surface point, the position that is used for the
spring is v = s — lq.. Here, [ is the length of the needle
part that is still outside the tissue. The direction vector of
the haptic device q. is computed from the haptic device
orientation quaternion q by using the quaternion rotation
operator applied to the pure quaternion pointing in z
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direction q. = q- (0,0,1)T - q~ %

Now, with a new needle path P and needle configuration,
the forces and torques that will be displayed by the haptic
device are computed. The force is the sum of:

1) A resistance force to cutting in needle direction at the

tip
four = —(ag,lAdQ + al,lAd)dl (5)

2) Friction force along the needle shaft. For each path

node, an offset Az; € R is updated in each iteration:

Az; + Az
Aa:j' =1 g, ’
wsen(Az; + Ax)

if |Az; + Az| < £
| N0

with Az being the relative movement of the haptic
device in insertion direction. From these offsets, the
total friction force is computed as

ffric = 2;<l ki 7“137 ;I;i_l || AIZ (7)

For larger numbers of path nodes n and high values
of k; this can act like a very stiff spring. To prevent un-
stabilities, i.e. overshooting associated to mass-spring
systems with large stiffness, the change of the friction
force is limited in each haptic frame by a fixed value.

3) A base force that results from the offset of haptic de-
vice position and the computed needle base projection
onto the plane perpendicular to the insertion vector at
the beginning of the needle path:

fhase = £ - [(n1 —x) — (0 — x) - dy] 8)

with x being the stiffness of a spring, which couples the
virtual needle base and device position.

Torque is computed by using a rotational spring between
the haptic device orientation and the tangential direction
of the simulated needle at the air and tissue interface.
Rotational forces around the needle z-axis are set to zero.

3 4D MoTION MODELS

The motion model function (X, t) was described as being
a time varying function without further specification. This
section will present different approaches to model and
implement respiratory motion. We utilize existing methods
from image registration and motion modeling of the lung
(mainly [31]], [32]) and introduce how these can be used
in a real-time visuo-haptic liver puncture simulation with
varying breathing cycles.

Our visuo-haptic simulation of a breathing virtual patient
is based on displacement fields estimated from a 4D CT
data set. This data set consists of a sequence of n 3D CT
images ljc(1,..n}y : £ — R and represents a single respira-
tory cycle from maximum inspiration over expiration back
to total inspiration. In the following, the states of this cycle
are labeled as end inspiration (EI), mid inspiration (MI),
end expiration (EE) and mid expiration (ME).

For each phase j from the sequence, a non-linear transfor-
mation ¢; : 2 — €2 exists, which describes the respiratory
motion between an arbitrary reference phase and phase
j. Here, this phase corresponds to the static state of the
virtual patient. These transformations can be represented

by ¢, = id 4+ u; with displacement fields u; : & — R? that
assign a displacement vector to each voxel. Estimation of
respiratory motion based on 4D CT image data by non-
linear image registration techniques has been a very active
area of research in recent years. However, most publications
on this topic deal with the special case of lung motion esti-
mation [39], [40], [41]. In contrast, the realistic visuo-haptic
simulation of a breathing patient requires an estimation of
breathing-induced motion of all thoracic and abdominal
structures displayed to the user. Estimating the motion
of multiple structures is a challenging problem, as most
registration approaches inherently assume the underlying
motion to be smooth. This assumption is obviously wrong
at interfaces of structures sliding along each other (e.g.,
lung/liver and its surrounding tissue [31]]). We, therefore,
employ the registration approach proposed by Schmidt-
Richberg et al. [31], which is able to handle those disconti-
nuities.

As transformations between the reference image and
each phase j are computed independently, noise or image
artifacts can result in a temporally inconsistent motion esti-
mation. Temporal inconsistencies can lead to visible motion
artifacts during simulation and we, therefore, perform a
PCA-based filtering of the estimated displacement fields to
remove them, which is a common approach in respiratory
motion modelling [42].

For the transformation from any phase j to the reference
phase, the inverse of u; is needed, which we prevent by
inversion during run-time. Also, it is necessary to provide
a transformation between the phases for each point in time.
Modeling and a memory conserving implementation of this
function u(X,t) is crucial. Theoretically, using inversion
of the displacement fields or diffeomorphic registration,
inverse displacement fields are available, but no satisfying
inverse motion model could be build based on the inverse
fields directly. In the following, different approaches for
modeling the function are represented: The first one is a
key frame based approach, in which all u; are considered
to be key frames in a sequence; in between two key frames,
u(X,t) is computed by linear interpolation of adjacent w;
and u;11. The second approach is similar to the first, but
also introduces extrapolation of out-of-sample predictions,
i.e. states that are not captured in the 4D data. A third
approach relies on the modeling of the breathing motion
driven by a so-called surrogate signal.

3.1 Full Cycle Key Frame Approach

Similar to computer animation methods, each displacement
field u; in the sequence of images I; is considered to be a
key frame, and in between key frames, interpolation of the
displacement fields takes place. All key frames are placed
on a normalized motion cycle time line at 7; € [0,1), as
shown in Fig.[3| This yields a displacement u(X, t) = b(X, 7)
at position X in reference space and the current normalized
time 7 € [0,1) using adjacent w; and w;y;, which are
interpolated linearly based on adjacent 7; and 7;4:

b(X,7) = (1 — a(7))ui(X) + a(7)ui1 (X) )
with a(r) = =1
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Figure 3: Upper: Plot of displacement for a fixed x during
the cycle. Lower: Magnitude of the displacement ||b(X, 7)||
for normalized cycle time 7. Here, n = 8 key frames placed
at 7,—1.s are used. Between two displacements given by
adjacent key frames, interpolation takes place.
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(b) Using only one half cycle (EI->EE)

Figure 4: Functions for cycling through the image sequence
(EI = end of inspiration, EE = end of expiration).

During the simulation, the value of 7 is changed to
run through the sequence. As depicted in Fig. several
functions 7 = f(¢t) : R — [0,1) could be applied: (1)
The obvious choice is to cycle through the sequence by a
sawtooth shaped function with fixed period. (2) This can
be augmented by introducing randomness to change the
length of each period, but keeping f’(t) = « constant. (3)
Furthermore, randomness can be introduced by varying
f'(t) during the cycle. This randomness introduces varia-
tions of the breathing to represent the natural variation of
breathing.

The used number of key frames should reflect the vari-
ations and non-linearities in the breathing motion of the
patient. At least, four key frames that correspond EI, ME, EE
and MI are needed for a full cycle including hysteresis. The
maximum number is limited by the available memory of the
graphics hardware and the resolution of the displacement
fields. We found that with high resolution displacement
fields, the resulting amount of memory easily exceeds the
available space when using the full sequence of available
phases.

3.2 Half Cycle Key Frame Approach

The major disadvantage of the full cycle model is that only
a single breathing cycle can be looped. The cycle length and
the temporal distance between adjacent key frames can be
varied, but maximum inspiration and expiration is fixed
to the available maximum and minimum state captured in
the 4D CT image sequence, limiting the approach to in-
sample predictions. Since maximum inspiration and expi-
ration varies naturally with each cycle, it is desirable to
model this aspect.

To also include out-of-sample predictions, only half of
the phases (e.g. only EI->ME->EE) can be used, which we
call a half cycle approach. Oscillating between maximum
expiration and maximum inspiration from the full cycle
is used and beyond EI or EE, extrapolation takes place.
Extrapolation is not possible with the full cycle approach,
since all the key frames form a closed loop. The upper
part of Fig. fb| visualizes a function that oscillates 7 to
produce an oscillation between EI and EE. The lower part
represents a function that includes values of 7 that do not fit
into the range of maximal and minimal inspiration. Using
extrapolation, the displacement fields for states beyond
maximal and minimal inspiration can be approximated.
We do not use adjacent key frames for the extrapolation
using Eq.[9) but the key frames associated to maximum and
minimum expiration. This gives the following extrapolation
expressions for out-of-sample (OOS) predictions:

boos (Xa T) = (]- - aoos(T))uEI(X) + aoos(T)uEE (X)

: T—T]
Wlth O[OOS(T) = ﬁ

As drawback of this method, hysteresis, i.e. different
paths between EE->EI and EI->EE, is not included in this
model.

(10)

3.3 Surrogate Signal-based Motion Model

The conceptual limitation of the previous two approaches is
that either states beyond minimal and maximal inspiration
from the sequence (full cycle approach) or hysteresis cannot
be represented (half cycle approach). To overcome these
limitation, real surrogate signals are used. These repre-
sent patient-specific variations of the breathing, which we
consider a valuable contribution to realistic visuo-haptic
simulation of respiration. Basically, a surrogate signal can be
a 1D signal of the patient’s breathing measured by a surro-
gate, for example a spirometry device or an abdominal belt.
It is assumed that a linear correspondence exists between
the measured surrogate signal and the actual motion of
internal organs of the patient. For 4D CT imaging, surrogate
signals are recorded for reconstruction and do not have to
be acquired in an extra step.

Here, our surrogate signal-based motion model is used,
which has been evaluated for diffeomorphic motion mod-
eling of the lung [32]. Generally, a surrogate signal can
be a signal of higher dimension; the aim is to increase
accuracy of the resulting model. For instance, a depth
image acquired by a time-of-flight camera could be used.
We use a dimensionality of ng,, = 2 by combining a
spirometry signal and its time derivative and denote it by
2(t) = (g(t),¢'(t))T : R — R"u. This is done to combine the
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measured value of the spirometry signal with information
indicating expiration resp. inspiration and thus enabling
modeling of hysteresis.

Using surrogate signals z; associated to the sequence of
non-linear transformations ¢;, a linear motion model can
be learned by multivariate regression under the assump-
tion of a linear correspondence between surrogate signal
and respiratory motion. First, the transformations ¢; are
reformulated as column vectors b; € R*™ with m being the
number of image voxels of I;. The model then relies on the
mean motion vector b, a learned system matrix Be R3™*2
and the surrogate signal z(t):

m = b + B2(t) (11)

for which B can be estimated by multivariate regression.
With given B, Eq. can be rewritten as the linear
combination of three column vectors a; 5 € R3™

m = a;g(t) + axg (t) + a3 (12)

Reinterpreting the column vectors as functions a; 3
R?® — R?® by rearranging the elements into a 3D image
structure and using linear interpolation, computation of a
single displacement now is defined as

u(X,t) = a1(X)g(t) + a2(X)g' (t) + as(X) (13)

and can be used in the algorithms for visual and haptic
rendering.

4 EVALUATION & RESULTS

To support the applicability of the proposed methods, we
first demonstrate forces computed by the needle insertion
algorithm for given parameters. Then, we present the im-
plementation of a demonstration system and give results of
the visualizatiorﬂ In the end, a performance analysis of the
needle algorithm and the ray casting is presented.

4.1 Needle Force and Parameter Evaluation

Our needle insertion algorithm can model the measure-
ments presented in [37] for ex-vivo needle insertion into
bovine liver, see Fig. To achieve this behavior, the pa-
rameters a; = 0.048—- and ay = 0.00527"]:;2 have been
set according to [37] and f°"* = 2.5N for the capsule of
a virtual liver tissue phantom. Inside the liver, the cutting
force has been set to f** = 1N and friction parameters to
R =0.025N and k = 0.5-2-.

To reflect our experience with liver puncture in PTCD
simulation [3], the parameters were set to a; = 1.2%,
az =0, f°"* = 0.3N and the friction parameters as above. A
resulting force plot is given in Fig. |5, for which the needle
was steered along a predefined path into the liver of the
virtual patient in caudal-crandial direction one time with
respiratory motion enabled and one time without it. First,
the needle was inserted into the liver over 10 seconds, then
it was stopped, followed by an additional insertion further
into the liver tissue. After an additional pause, the needle
was retracted.

1. A video sequence is available in the supplementary material.
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Figure 5: Forces acting on the haptic device in insertion
direction for needle insertion along predefined insertion
paths: (upper) Modeling of measurements given in [37]
(lower) needle insertion into a virtual patient with and
without simulation of respiratory movements.

4.2 Demonstration System

In this section, the capabilities of our 4D visuo-haptic
rendering framework are demonstrated for a liver puncture
scenarig’ For this purpose, a low-dose 4D CT data set (14
phases, 512 x 512 x 460 voxels) was used to generate a
sequence of displacement fields as described in section
As the reference phase, maximum inspiration was selected.
Surrogate signal data of a spirometry device acquired for
4D reconstruction was available. Using this data, the motion
models with different resolutions were created (643, 1283
and 256> voxels). Additionally, the reference phase image
data was resampled with a resolution of 256® voxels. Since
this data set is based on low-dose CT data, the contrast
of structures inside the liver is very low. For providing a
training scenario of liver puncture, we artificially added the
structures liver blood vessels, bile ducts and lesion. First,
segmentation masks of the three structures were created by
a rough registration of a segmentation of a similar patient
image with label data and manual refinement of the result.
Then, image values in the CT data where adjusted using the
masks to represent typical values. Additionally, using the
segmentation masks, surface models have been created us-
ing the Marching Cubes algorithm [43] followed by surface
smoothing and decimation. This was also performed for
threshold based segmentations of the patient’s skin surface
and bone structures. By this means, we are able to analyze
the behavior of both ray casting based visualization and
surface based visualization and show that our method is
also well suited for surface based rendering.

2. Remarks on implementation are given in the appendix
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Figure 6: Sequence of mixed surface and volume rendering with surface model of a lesion (yellow), bile ducts (green),

liver blood vessels (red) and bony ribs (white).

Figure 7: Overlayed image and photo sequence of virtual
needle and haptic device handle with movement and rota-
tion induced by breathing motion.

Figure 8: Clipped tissue phantom with effect of needle
angulation during needle insertion (upper) and effect of
breathing induced deformation of tissue at the needle tip
on the needle path (lower). Left side: world space. Right
side: reference space.

4.3 Visual Results of the Motion Modeling

Fig. [] shows a combined volume and surface rendering
with a needle inserted towards a mock up tumor model.
The breathing induced motion of the lung, liver and inside-
liver structures can clearly be seen. Bending of the needle
is also well visible. Forces resulting from the lever-like
behavior of the needle can be clearly perceived at the haptic
device handle. Fig. [/] shows the movement of the haptic
device handle under free movement in the same scenario.

In Fig. |8} the effect of needle angulation by the user
and breathing motion on the needle path is demonstrated.

Figure 9: Visualization of the influence of a palpating finger
with fixed position on the breathing patient model.

For the first case, the needle was inserted perpendicular
to the surface for ca. 10 mm into a virtual tissue phantom
without breathing motion. Afterwards the needle was hold,
angulated and further insertion took place. This results in
a slightly bended needle. For the second case, the needle
has been inserted into the phantom under displacement of
parts of the phantom. The needle remains nearly without
bending, but a non-linear needle path in reference space
can be perceived.

To demonstrate the rendering of local deformations com-
bined with the breathing induced global displacement, Fig.
] shows a sequence with a virtual finger that is fixed to a
position close to the patient model’s skin surface.

Resulting displacement fields are visualized using color
coding of the projected direction in Fig. [10] Also, Fig.
presents different settings of the inversion scheme for a
fixed breathing phase. For ray casting, it can be seen that
using only a single iteration and not including the result
from previous sampling points does not create a smooth
rendering. With it, a smooth rendering is created and with
twice the number of sampling points, only interpolation
rendering artifacts vanish without affecting the overall re-
sult in a noticeable way. For the computation of a slice
using the fixed point scheme, it is shown that a single
iteration does not suffice, but 5 iterations is visually nearly
indistinguishable from the result given by 50 iterations.

Fig. shows the drawback of using low resolution
displacement fields; in regions where discontinuities in the
displacement fields are present, i.e. at the sliding lung
boundary, smearing artifacts arise. The artifacts are present
between lung and ribs, which is not a punctured region,
making them not relevant for the haptic simulation.
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Figure 10: Resampled sagittal slices of the virtual patient CT data during the breathing sequence EI->ME->EE->MI and
out-of-sample (OOS) predictions for both the key frame and the surrogate model. The direction of the displacements
projected onto the slice are color code by the HSV color wheel, amplitude is indicated by opacity of the overlay (total

opaqueness corresponds to 10 mm).

4.4 Performance Analysis

Run time behavior of the implementation in Nvidia Cuda is
analyzed using a Nvidia GTX 680 with 3Gb of RAM. First,
we analyzed the processing times for the rendering of a sin-
gle frame by ray casting while using the presented methods
for different image sizes and different displacement field
sizes. The results are shown in Tab. 2l The resolution of
the rendering viewport was set to 1224x1014 pixels. Note
that both key frame approaches can rely on the same code
for rendering and only differ in the determination of the
interpolation parameter and interpolated key frames, which
takes place before the ray casting.

Updating the position of vertices of surface models using
Cuda is very fast: For surface models of bone (430,578 ver-
tices), skin (145,648 vertices) and liver blood vessels (12,026
vertices), update times of 770.5+40.7 ps, 418.1£16.8 us and
141.1£20.6 ps, resp. have been measured (252 samples).

Also, a performance analysis of the needle insertion algo-
rithm for different numbers of needle nodes (15, 25 and 50)
was performed on a PC with an Intel i7 CPU 970 @ 3.20GHz
and 24 Gb of RAM. Fig. [13| shows box-plotted rendering
times of the parts of Alg. [I| grouped into (1) update of
displacements, (2) time stepping the physics simulation (3)
total computation time. Furthermore, for a number of 25
needle nodes, the mean processing time for one step of the
physics simulation has been measured, which is 14.5+15.7
ps, giving a mean number of 15.146.7 iterations of the
physics simulation in each haptic simulation frame.

Image size Field size N Mem Rendering
Model Voxel Mb Voxel Mb Mb mean stdev
none small 151 0 0 O 151 16.36 0.10
none large 1,085 0 0 0 1,085 1599 0.12
key frame small 151 643 4 14 210 35.74 0.16
key frame small 151 1283 34 14 621 36.83 0.22
key frame small 151 256% 268 6 1,762 37.52 0.33
key frame large 1,085 643 4 14 1,144 3590 0.16
key frame large 1,085 1283 34 14 1,555 36.05 0.15
key frame large 1,085 2562 268 4 2,159 36.21 0.32
surrogate  small 151 643 4 3 164 27.08 0.13
surrogate  small 151 1283 34 3 252 27.48 0.90
surrogate  small 151 256% 268 3 956 27.63 0.95
surrogate large 1,085 643 4 3 1,098 26.32 0.13
surrogate large 1,085 1283 34 3 1,186 26.53 0.13
surrogate large 1,085 256% 268 3 1,891 26.55 0.20

Table 2: Ray casting rendering times in ms for the different
motion models with a low (2563 voxels) and high (512 x
512 x 460 voxels) resolution of the image data.

5 DISCUSSION

The previous chapters of this article showed the general
applicability of our presented methods and the performance
of our implementation. It was shown that the influence of
breathing motion modeled by the given approaches can
be used for visuo-haptic interaction and creates realistic
bending of a flexible needle. Besides this, bending and
breathing motion influence the path taken by the needle
through the virtual patient’s tissue. Regarding haptic force
feedback, the resulting forces can be perceived distinctively.
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Figure 11: Effects of different settings of the inversion scheme. Upper row (left to right): Volume rendering of the navel
without inversion, without incorporation of the result of previous samples, the scheme as described in the article and
with doubled number of sampling points. Lower row: Sagittal slice with 0, 1, 5 and 50 iterations of the inversion scheme.

D

Figure 12: Left: Low resolutions of the displacement field lead to smearing artifacts at sliding interfaces. Right: Surface
model of ribs are affected by this at a resolution the displacement field of 64% elements.
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Figure 13: Box-plotted rendering timings of needle algo-
rithm for the key frame based approach (left), and the
surrogate signal based approach (right). Each pair of three
contains of update of displacements (blue), physic simula-
tion (red) and total computation time (green).

For the palpation simulation, the angle of rotational back
transformation of the resulting palpation force was small
for the patient model under consideration. Probably, this
is caused by the fact, that nearly no rotation is present
in u(x,t) near the skin surface. The computed force and

torque could directly be displayed to the user without
the transformation. In general, this assumption might not
be true for every patient model. Nevertheless it might be
interesting to investigate if the effect of small changes of
force direction can be perceived significantly and in which
extent the type of haptic device has influence on this.

For the estimation of haptic parameters, we adjusted
the parameters to reflect the behavior to be similar to
previous versions of the simulation framework (e.g., [26],
[3]) that did not include breathing simulation. We showed
that the needle insertion algorithm is capable of simulating
forces as measured in [37]. Also, we demonstrated that
the stiffness parameters of the needle can be adjusted to
resemble behavior of a 16 gauge needle. Further parameter
estimation and evaluation should be performed in future
work in case the framework is applied to a full feature
training simulator and should include the assessment of
face and construct validity.

The presented demonstration scenario uses a virtual
patient with an artificially introduced lesion. Thus, the
used surrogate signal and computed displacement function
might not fully reflect reality. For patient data including a
real lesion, the methods will incorporate the small changes
in tissue behavior. Generally, the motion methods are from
the domain of radiation therapy of lesions under respiratory
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motion, where an accurate prediction of the movement of
the lesion is desired.

For the visualization, regions, in which large discon-
tinuities of the resulting displacement field are present,
smearing artifacts arise. These are especially visible at lo-
cations where a high gradient of image values exists. An
example for this are the regions between ribs (high image
values) and lungs (very low image values). For the puncture
scenarios simulated by our framework, the lungs or struc-
tures inside of it are not relevant for haptic simulation and
thus these artifacts only remain as an visualization issue.
We consider the interpolation between voxels along the
discontinuities at the interfaces of sliding structures as the
source for this. By using displacement fields with a larger
resolution, this will be mitigated in the future.

Concerning rendering performance, it was shown that, as
expected, the introduction of motion models increases the
time needed for volume rendering, but interactive frame
rates are still easily achievable. Remarkably, the resolution
of the displacement field does influence the performance
only very little. Updating the positions of the vertices for
surface rendering is negligible. For haptic rendering, we
found that 25 nodes gave us the best results as a trade-
of between plausible visualization of the discretized needle
and a stable simulation.

For our method to work, we only need a simple dis-
placement function and perform its inversion on-the-fly
and only for needed elements. This is advantageous since
it is straightforward to implement such a function. Also,
the iterative fixed point inversion is always computed only
once per sampling point and relies on accurate results from
previous sampling steps. This applies for both the haptic
rendering as well as the visual rendering by ray casting.
For haptic rendering, the accuracy of the inversion method
depends on two factors: First, the temporal sampling rate,
i.e. the haptic update rate, which is very high. Second,
the change of sampling location, which depends on the
movement of the haptic device. For ray casting, the sam-
pling rate, i.e. the spatial distance between sampling points
on a ray influences the accuracy of the computed inverse
displacement. Also, it depends on the rate of change of
the displacement function, which is also dependent on the
smoothness of the displacement field.

A central concern of our simulation framework is the
goal of avoiding unstructured mesh models for haptic and
visual rendering for the purpose of being able to omit the
mesh generation process for new patients. Nevertheless,
the motion models presented here could be integrated
into coarse grid or mesh based frameworks by applying
the displacement function to mesh nodes. For FEM based
methods, it might be reasonable to apply it to static or
boundary nodes.

Overall, we consider the introduction of the presented
methods a very valuable contribution to visuo-haptic simu-
lation of needle puncture interventions. The methods enable
for the first time realistic visuo-haptic needle insertion
simulation into a virtual breathing patient model based
on a patient specific 4D image data set and real breathing
signals. Especially the transfer of methods from image reg-
istration to visuo-haptic rendering enables a highly realistic

model of respiratory motion.

6 CONCLUSION AND FUTURE WORK

A visuo-haptic simulation framework for needle insertion
capable of rendering virtual patients under the influence
of breathing motion was presented. The motion models are
fast to compute, making them suitable for visual rendering
using ray casting or surface rendering, and can be used
for haptic interaction with the virtual patient model under
respiratory motion.

Here, we used a recorded spirometry surrogate signal.
In the future, the source of the signal could be based on
surrogate data recorded at run-time of the simulator. This
way, training of an intervention could be augmented by
having a training partner control the breathing of the virtual
patient model. Alternatively, a realistic synthetic surrogate
signal could be simulated during run-time [44].

Future work will include the investigation of methods for
estimation of breathing motion for patients for which only
3D images are available. This way, motion models could be
generated for the simulation without having to obtain a full
4D CT.

Additionally, the framework could be applied to other
needle insertion interventions. If necessary, bevel-tip needle
behavior could be easily integrated. Furthermore, the appli-
cation of the presented respiratory models is not limited to
(multi-)proxy based haptic algorithms and needle insertion
and could be integrated in surgery simulation frameworks
that rely on mesh based methods.

APPENDIX

Implementation of our 4D framework is split into a CPU
component that deals with the haptic computations and a
GPU component that is responsible for visualization. The
ray casting based visual volume rendering of the breathing
patient is implemented entirely using Nvidia Cuda. The
rendering process writes to a pixel buffer object shared
with the OpenGl environment of a VIK based rendering
pipeline. Deformable triangular surfaces are also stored
in shared pixel buffer objects. Additionally, VIK is used
for the visualization of tools in the scene. Compared to
the main memory of a modern workstation, the amount
of available GPU memory is limited. Medical images and
especially displacement fields are relatively large. In our
Cuda-based GPU implementation, we store each image
voxel by 9 bytes (4 bytes gray value, 4 bytes for a second
channel, 1 bytes for the label set). To use fast texture
interpolation, it was necessary to use single precision floats
(4 bytes). Each element of the displacement field is stored
by 16 bytes (4 bytes for x-, y- and z-component, 4 un-
used bytes). This way, a single image with a resolution of
512 x 512 x 460 voxels and four displacement fields used for
the key frame method at a resolution of 256 voxels already
accounts for approx. 2 Gb of memory, which already fills a
huge part of the available GPU memory on our reference
hardware (Nvidia GTX 680 with 3Gb of RAM). Concerning
the CPU based implementation of the haptic algorithms,
it is worth mentioning that instead of performing look up
and interpolation in the displacement fields just-in-time, all
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needed values are fetched all at once before performing
Alg. 1] to save time. Also, the needle haptic algorithm was
designed in a way that reduces random access to elements
of the available image data; during insertion, only values
at the needle path tip are updated.
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