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ABSTRACT

Spatiotemporal image data sets, like 4D CT or dynamic MRI, open up the possibility to estimate respiratory
induced tumor and organ motion and to generate four-dimensional models that describe the temporal change in
position and shape of structures of interest. However, two main problems arise: the structures of interest have to
be segmented in the 4D data set and and the organ motion has to be estimated in the temporal image sequence.

This paper presents a variational approach for simultaneous segmentation and registration applied to temporal
image sequences. The proposed method assumes a known segmentation in one frame and then recovers non-
linear registration and segmentation in other frames by minimizing a cost function that combines intensity-based
registration, level-set segmentation as well as prior shape and intensity knowledge. The purpose of the presented
method is to estimate respiration induced organ motion in spatiotemporal CT image sequences and to segment
a structure of interest simultaneously.

A validation of the combined registration and segmentation approach is presented using low dose 4D CT
data sets of the liver. The results demonstrate that the simultaneous solution of both problems improves the
segmentation performance over a sequential application of the registration and segmentation steps.
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1. PURPOSE

The main objective of radiation therapy is to eradicate or shrink tumor cells without damaging the surrounding
tissue by delivering a high radiation dose to the tumor region and a dose as low as possible to neighboring normal
tissues. Intrafraction organ motion is an issue that is becoming increasingly important for radiotherapy treat-
ments. Especially, respiratory motion is characterized by a large magnitude and presents significant challenges in
ensuring precise delivery of high radiation to thoracic and abdominal tumors. In conventional radiation therapy,
safety margins are enlarged to compensate for respiratory motion. One the one hand, this solution increases
the volume of irradiated healthy tissue so that the likelihood of treatment-related complications becomes larger.
On the other hand, it limits attempts to escalate the dose delivered to the tumor to increase tumor control. In
order to improve dose conformity and achieve steep dose gradients, recently a variety of techniques to explic-
itly account for respiratory motion has been proposed (breath-hold and shallow-breathing methods, respiratory
gated techniques or respiration-synchronized techniques).1 However, implementation and optimization of such
techniques require detailed knowledge about respiratory motion and its impact on the dose delivery and resulting
dose distributions.

Standard three-dimensional (3D) imaging does not provide information about the dynamic behavior of inner
organs. In contrast, spatiotemporal image data sets, like 4D CT or dynamic MRI, open up the possibility to
estimate respiratory induced tumor and organ motion and to generate four-dimensional models that describe
the temporal change in position and shape of structures of interest. In radiotherapy of the thorax and upper
abdomen, such models can be used to optimize radiotherapy plans in order to be less sensitive to breathing-
induced organ motion and to enable respiratory gating or robotic radiotherapy.1–3 However, two main problems
arise: the structures of interest have to be segmented in the 4D data set and the organ motion has to be estimated
by registering the frames in the temporal image sequence.

In our project, 4D CT image data with high spatial and temporal resolution is used to analyze the influence
of the breathing motion on radiation dose distributions. For the calculation of organ specific dose distributions,
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a segmentation of the structures of interest is necessary as well as an estimation of dense displacement fields to
sum up the applied dose per voxel. The segmentation of inner organs in 4D CT data is a challenging problem,
because in contrast to diagnostic CT protocols the exposure per slice has to be significantly reduced due to the
large number of slices. Therefore, the resulting 4D images are characterized by a poor soft tissue contrast. We
address this problem by using shape prior information for segmentation. Furthermore, from earlier work it is
known that respiratory motion causes complex deformations of inner organs,4 therefore a non-linear registration
approach is required to estimate the deformation field.

Different approaches exist for modeling organ motion by solving the segmentation and registration problem
independently,5 by using the segmentation results to guide the registration process,6–8 or by using the registration
results to transfer an initial segmentation to all time frames.4, 9 However, solutions of both problems depend
on each other. Therefore, some more recent methods embark on the strategy of solving the problems of motion
estimation and segmentation simultaneously.

Many of these approaches, however, are not suitable for the segmentation and motion analysis of 4D medical
images. Some of these approaches are restricted to lower dimensional parametric transformations10–15 or are
requiring specific atlas information.16, 17 A broad variety of methods use variational approaches based on level
set segmentation and non–linear registration.18–21 Some approaches are using level set based motion competition
techniques.18 However, the assumption of piecewise homogeneous motion does not hold for soft tissue deforma-
tions. In other approaches the estimated motion field is computed only at object surfaces19, 20 or no shape–prior
information can be incorporated in the model.20–22

In this paper, we present a framework for combined intensity–based non–linear registration and level set based
image segmentation that incorporates prior shape knowledge and prior intensity information. The segmentation
is obtained by a non–linear registration to a reference shape and using a level set formulation related to the
Mumford–Shah functional.23 A global, dense displacement field is calculated using intensity and segmentation
information. Both problems are formulated in a joint variational approach and solved simultaneously. We use the
proposed method for the segmentation and respiration induced motion estimation of the liver in spatiotemporal
CT image sequences. The reason for the choice of this particular application is two–fold: In context of an
ongoing project5, 24, 25 we want to compare simulated dose distributions for the conventional and respiratory
gated irradiation of liver tumors. Moreover, the segmentation of the liver in CT images is challenging due to
the poor soft tissue contrast and overlapping gray-level ranges of nearby tissues. For these reasons, conventional
segmentation methods cannot be directly applied to liver segmentation. A variety of interactive and automatic
liver segmentation approaches were developed in the last years,26–29 though only few are applicable for low dose
4D CT images.30

The organization in this paper is as follows. In section 2.1 we present a variational approach for level set
based segmentation using intensity and shape prior knowledge. Then, our way to combine segmentation and
non–linear registration is explained in section 2.2. The numerical method to minimize the resulting energy
functional is outlined in section 2.3. An experimental validation of the combined registration and segmentation
approach is presented in section 3. First, we describe the 4D image data and the evaluation methods (section
3.1). The quantitative results in section 3.2 demonstrate that the simultaneous solution of both problems within
a single mathematical framework improves the segmentation performance over a sequential application of the
registration and segmentation steps.

2. METHODS AND MATERIALS

The purpose of the method proposed in this paper is to estimate a dense displacement field and simultaneously
to segment a structure of interest (here: liver) in spatiotemporal CT image sequences. Our variational approach
makes use of level set based segmentation models31–33 and variational image registration techniques.34 Due to
poor soft tissue contrast in 4D CT data sets, prior shape and intensity knowledge will be included in the model.

Given is a spatio–temporal image sequence I(x, t) : Ω × IR → IR. We presume a reference shape for the
segmentation of the object of interest in one of the image frames, let’s say I(x, tref ). This reference segmen-
tation is represented by a level set function Φref (x) : Ω → IR and is determined by a previous semiautomatic
segmentation step. We seek for a each given time tj the displacement vector field uj(x) : Ω → Ω that describes
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Figure 1. Left: Estimated gray value density functions for background and liver. Right: result of a intensity–based level
set segmentation of the liver without shape prior information

the shift of position x in frame I(x, tj) to its corresponding location in the reference frame I(x − uj(x), tref ).
Simultaneously, we seek the set of level set functions Φj(x) that represent the segmentation of the object of
interest in the image frames.

2.1 Variational level–set segmentation using intensity and shape priors.

Since their introduction in the early 90’s level set methods have become increasingly popular for image segmenta-
tion and have been utilized in many medical applications, e.g. for the segmentation of the liver30 or the heart.12

An important class of these methods uses region–based segmentation schemes by partitioning the image in homo-
geneous regions by fitting statistical intensity or texture models.33, 35, 36 In contrast to edge–based models,31, 32

region–based techniques tend to be less sensitive to noise and generate satisfactory results even if edge informa-
tion is not present along the entire object boundary. Region-based segmentation algorithms commonly use an
energy term based on Mumford-Shah segmentation functional23 so that piecewise-constant intensity values are
assumed. Available a priori knowledge about intensity properties of object and background can be incorporated
by using precalculated density functions pobj(I) and pbg(I).12 In our application, the region–based energy term
is defined as:

J Seg[Φj ] =
∫

Ω

−H(Φj(x)) log (pbg(I(x, tj)))︸ ︷︷ ︸
background region

− (1 − H(Φj(x))) log (pobj(I(x, tj)))︸ ︷︷ ︸
object region

dx +
∫

Ω

‖∇H(Φj(x))‖︸ ︷︷ ︸
contour length

dx

(1)
where Φj : Ω → IR is the desired level set function for image frame tj and H is the Heaviside function. Because
voxel intensities are assumed to be constant over the time, the unknown density functions pobj and pbg are
estimated using the reference segmentation and intensity values of the reference frame. Under the assumption
that initial segmentations lie near the object boundary only voxels in a certain region around the object are used
for a parzen–window estimation37 of intensity probabilities:

pj(g) =
1

|Gj |
∑

gi∈Gj

1
σ
√

2π
exp

(
− (g − gi)2

2σ2

)
with j ∈ {“obj”,“bg”}

and
Gobj = {I(x, tref )|dlow < −Φref (x) < dhigh}
Gbg = {I(x, tref )|dlow < Φref (x) < dhigh} .

The lower distance threshold dlow is used to be more robust against segmentation errors and partial volume
effects. Fig. 1 shows estimated density functions for background and liver and an example CT image slice
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overlayed with the segmentation result using eq. (1). It can be observed that due to overlapping intensity ranges
an intensity based liver segmentation will fail. Therefore, additional shape prior information is needed.

Different approaches were developed for incorporating prior shape knowledge into level set based segmentation
methods.10, 38, 39 In our approach, the similarity between shapes is evaluated by the distance of the zero level set
of Φj to the reference shape Φref :

∫
Ω

δ(Φj(x)) (Φj(x) − (Φref ◦ ϕ)(x))2 dx. (2)

δ(·) denotes the Dirac distribution and Φref◦ϕ applies a transformation ϕ to the reference shape. The formulation
in eq. (2) has the advantage that the level set function Φj has to be evaluated only near the zero level set, that
corresponds to efficient implementation techniques, like sparse fields or narrow bands. Furthermore, we seek for
a transformation ϕ that best match the reference shape to the current target image. This transformation is
determined by a registration of the reference frame I(x, tref ) with the current target frame I(x, tj).

2.2 Variational framework for joint segmentation and motion estimation.

Due to the wide range of applications a variety of different registration techniques has been developed in the last
two decades (see Zitova and Flusser (2003)40 for an survey). In our application a dense non-linear displacement
field is needed. Therefore, we will focus on non–linear intensity–driven approaches. The aim of image registration
is to find a transformation ϕ(x) = x − u(x) that matches the reference frame Iref ◦ ϕ onto the target frame
Ij . The general registration problem may be phrased as:34 J Reg[u] = D[Iref , Ij ; u] + αS[u] → min , where D
models the distance measure, e.g. sum of squared differences (SSD) or mutual information, and S is a regularizer
to constrain the calculated transformation to physically meaningful movements. We choose the sum of squared
differences to measure intensity differences and the diffusive regularization to ensure a smooth deformation field.
Diffusive regularization was used in different applications for optical flow estimation20, 41 and leads to a very
efficient numerical implementation.42

The aim is to find the level set segmentation Φj of the target frame I(x, tj) and the displacement field uj(x)
between Ij and Iref simultaneously by minimizing the energy functional:

J [Φj , uj] = λ1

∫
Ω

−H(Φj(x)) log (pbg(I(x, tj))) − (1 − H(Φj(x))) log (pobj(I(x, tj))) dx

︸ ︷︷ ︸
intensity–based segmentation

+λ2

∫
Ω

‖∇H(Φj(x))‖ dx

︸ ︷︷ ︸
contour length

+λ3

∫
Ω

(I(x, tj)) − I(x − uj(x), tref )))2 dx

︸ ︷︷ ︸
intensity–based registration

(3)

+λ4
1
2

d∑
l=1

∫
Ω

‖∇ujl‖2 dx

︸ ︷︷ ︸
diffusive regularization

+λ5

∫
Ω

δ(Φj(x)) (Φj(x) − Φref (x − uj(x)))2 dx

︸ ︷︷ ︸
shape prior

Here, the segmentation and registration processes are coupled by the shape prior term. The energy functional
J is minimized with respect to uj and Φj for each desired time frame I(x, tj). λi, (i = 1, . . . , 5) are parameters
balancing the influence of the five terms in the model.
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In contrast to other approaches for joint segmentation and non-linear registration19, 20 the displacement field
u is determined for the whole image domain and not only between object surfaces. In regions distant from the
contour the displacements are influenced mainly by image intensities. Near the object surface the influence of
the coupling term grows. However, due to the smoothing criterion the segmentation information may affect the
transformation in a large image region.

The shape prior term penalizes distances between Φj and the deformed reference shape. In contrast to other
approaches,14, 20 deviations between Φj and Φref ◦ ϕ are possible depending on the weighting parameter λ5.
The reason for this approach is two-fold: First, the segmentation result becomes resistant to small segmentation
errors in the reference shape. Furthermore, current non–linear registration methods presume smooth continuous
deformation fields, but complex deformations of inner organs are sometimes non–continuous (e.g. motion of the
lung along the pleura). Therefore, a correct registration is not possible in every case. By choosing a variable
weighting parameter λ5(x) in eq. (3) prior knowledge about problematic regions can be incorporated in the
model. A drawback of this approach is that the level set function Φj is not fully determined by the displacement
field uj and additional unknowns must be calculated. However, the level set segmentation can be computed very
efficiently and the additional computation time is negligible (see section 2.3).

2.3 Numerical Methods.

In the numerical implementation continuous approximations δε and Hε of the Dirac and Heaviside distributions
are used.12 For the minimization of eq. (3) a time marching approach was employed. According to the calculus
of variations a solver of eq. (3) must fulfill the conditions:

∂J
∂Φj

= 0 and
∂J
∂uj

= 0. (4)

From the associated Euler–Lagrange equations the following iterative update scheme is derived:

Φk+1
j = Φk

j + τφ λ1δε(Φk
j ) (log(pbg(Ij(x))) − log(pobj(Ij(x))))

− τφ λ2δε(Φk
j )∇ · ∇Φk

j

|∇Φk
j |

(5)

+ τφ λ5δε(Φk
j )

(
Φk

j (x) − Φref (x − uj)
)

and
uk+1

j − τu∆uk+1
j = uk

j + τu λ2

(
Ij(x) − Iref (x − uk

j )
)∇Iref (x − uk

j ) (6)

+ τu λ5δε(Φj)
(
Φj(x) − Φref (x − uk

j )
)∇Φref (x − uk

j ),

where k is the current iteration number and τφ, τu denote the size of the time steps. In each iteration step Φj

is updated according to eq. (5) and uj is updated according to eq. (6) until a steady state solution of both
evolution equations is found. Sparse field level sets43 are used for an efficient computation of Φj . In eq. (6)
an efficient semi–implicite iteration scheme is utilized using additive operator splitting for the necessary matrix
inversion.42 Assuming tref = t0, the calculated displacement for time frame j is used to initialize the next time
frame: u0

j+1 = uj and Φ0
j+1(x) = Φref (x − uj) and u0 = 0.

3. EXPERIMENTS AND RESULTS

3.1 Image acquisition and validation methods

The behavior of the algorithm was investigated by segmenting the liver in 4D CT image sequences acquired
during free breathing. Four cancer patients were examined with a 16-slice CT scanner (Brilliance, Philips
Medical Systems, Cleveland) operated in cine-mode for the investigation of respiration-induced organ mobility.
During the acquisition process the patients were instructed to breathe naturally. For each patient 25 scans
per couch position were acquired continuously, 16 to 19 couch positions were investigated to ensure adequate
coverage of the thorax and upper abdomen. For further data acquisition details see Low et al.(2003)44 and Lu
et al.(2005).45
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(a) (b) (c)
Figure 2. Automatic liver segmentation in 4D CT data using joint segmentation and registration. Left: reference phase
of the respiratory cycle with reference segmentation shown in red. Middle and Right: results for two frames of the image
sequence with the automatic re-contouring results shown as yellow curves (the reference liver contour is shown in red).

The resulting spatiotemporal series of CT scans were used to reconstruct 4D CT data sets. To reduce artifacts
which were caused by sorting based 4D reconstruction methods45 an optical flow based reconstruction method
for 4D data sets was applied.24, 46 The resulting artifact–reduced reconstructed 4D CT data sets consist of 14
3D images consisting of 512 × 512 × 272 voxel. In contrast to diagnostic CT protocols the exposure per slice
has to be significantly reduced due to the large number of slices (about 3800 slices per patient). Therefore, the
resulting 4D images are characterized by a poor soft tissue contrast and segmentation of inner organs, like liver
or pancreas, becomes challenging (see fig 1).

For each patient data set 6 time frames were selected: maximum inhalation, maximum exhalation, two
intermediate frames during inhalation and two frames in the exhalation phase. The liver was segmented by an
expert in each of the associated 24 image volumes as ground truth. The joint segmentation and registration
algorithm was applied for the automatic re-contouring of the 4D CT data. The peak exhale image is treated as
reference and used to segment the liver contour in the remaining 5 image volumes for each patient.

For comparison purpose, three different experiments were performed : in a first experiment, we register
reference and target image by a diffusive registration approach (λ1 = λ2 = λ5 = 0). The segmentation result
is the deformed reference segmentation (algorithm ”pure Reg”). In a second experiment, the result of the
registration step is improved by a succeeding level set segmentation with λ3 = λ4 = 0 using the deformed
reference segmentation as shape prior information (algorithm ”Reg→Seg”). In the last experiment, we perform
the proposed joint segmentation and registration by minimizing eq. (3) (algorithm: ”joint Reg+Seg”).

To evaluate segmentation accuracy, mean surface distances and overlap coefficients were computed between
the ground truth and the segmentation results of the three algorithms (pure Reg, Reg→Seg and joint Reg+Seg).
The overlap coefficient is defined as |A∩B|

|A∪B| , where A and B are the automatically estimated region and the
corresponding manually segmented ground truth. There is no ground truth available for the validation of
estimated displacement fields. We computed the mean squared intensity difference (MSD) between the warped
reference image and the target image frame and validated registration accuracy by visual inspection.

3.2 Results

The necessary parameters were determined experimentally for one image pair and we reused this set of parameters
for all tests. The parameters used in our tests are: τu = τφ = 0.5, λ1 = 0.2, λ2 = 0.3, λ3 = 1, λ4 = 0.5 and λ5 = 0.1
(except λi = 0 as described above).

In figure 2 three images acquired in different phases of the respiratory cycle are shown. Figure 2(a) presents
the reference image for patient A and the manual liver segmentation is illustrated as red curve. The liver region
in all other phases is automatically segmented using the proposed joint registration and segmentation method.
The results for two frames of the image sequence are shown in figure 2(b) and 2(c). By visual inspection, the
results are very accurate despite large deformations. Table 1 and 2 summarize the results of the segmentation
accuracy. The presented mean surface distances and overlap coefficients are averaged over all time frames per
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pure Reg Reg→Seg joint Reg+Seg
Patient A 92,45% 94,01% 94.71%
Patient B 93,04% 89,00% 94,46%
Patient C 92,09% 91,91% 93,96%
Patient D 92,88% 91,41% 94,98%

Table 1. Overlap coefficients (in %) between the ground truth and the segmentation maps obtained using diffusive
registration (pure Reg), registration and subsequent segmentation (Reg→Seg) and combined registration and segmentation
(joint Reg+Seg). All values are averaged over five breathing phases.

pure Reg Reg→Seg joint Reg+Seg
Patient A 1,31 1,78 1,15
Patient B 1,19 2,25 1,14
Patient C 1,63 1,66 1,38
Patient D 1,45 1,58 1,26

Table 2. Mean surface distances (in mm) between the ground truth and the segmentation result obtained using diffusive
registration (pure Reg), registration and subsequent segmentation (Reg→Seg) and combined registration and segmentation
(joint Reg+Seg). All values are averaged over five breathing phases.

patient. It can be observed that combined registration and segmentation leads to the best segmentation results
for all test cases. For three patients, the subsequent segmentation in the Reg→Seg algorithm leads to a decrease
in the segmentation performance due to contour leakage.

Fig. 3 visualize segmentation accuracy of the three methods for each time frame of patient D. If reference and
target frame are close together, joint registration/segmentation and pure registration have a similar segmentation
performance. If the differences between reference and target get more apparent, joint registration/segmentation
perform considerably better. Furthermore, the graph reveals the advantages and disadvantages of subsequent
registration and segmentation. One the one hand, contour leakage cause decreased segmentation performance
if registration–based segmentation results are very accurate. On the other hand, segmentation performance is
enhanced due to the succeeding adaptation of the contour if no accurate registration can be achieved.

In fig. 4 an example of the iterative decrease of mean squared differences between target image and deformed
reference image by standard registration and by joint registration/segmentation is shown. Due to low intensity
differences between liver and surrounding tissues, the registration converges very slow in this region. It can be
observed that the additional segmentation information leads to a faster convergence of the registration method.
However, by visual inspection the final registration results are very similar between standard registration and
joint registration/segmentation.

4. CONCLUSION

This paper presents a variational approach for simultaneous segmentation and registration applied to tempo-
ral image sequences. The proposed method starts with a known segmentation in one frame and then recovers
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Figure 3. Evaluation results of segmentation accuracy
for each time frame of patient D.

Figure 4. Example curve for the decrease of the mean
squared difference between target image and deformed
reference image during joint registration/segmentation.

non-linear registration and segmentation in other frames by minimizing a cost function that combines intensity-
based registration, level-set segmentation and prior shape knowledge. The purpose of the presented method is
to estimate respiration induced organ motion in spatiotemporal CT image sequences and to segment a structure
of interest simultaneously. Experimental results using temporal CT image sequences showed that the proposed
approach performed better than two other segmentation/registration schemes: standard registration of refer-
ence and target image or registration and subsequent segmentation. Furthermore, the proposed method can
be implemented efficiently using sparse field level sets and additive operator splitting. We consider that the
presented method holds the potential to asses the respiratory dynamic of inner organs and can be used to outline
automatically structures of interest in 4D image data for radiotherapy planning.

The current implementation contains no temporal smoothness condition for displacement field or segmenta-
tion. This is due to the size of the considered data sets and due to run–time and memory issues. However, the
inclusion of such conditions in our approach is straight forward. A drawback of our method is that 7 parame-
ters have to be defined: λ1, . . . , λ5, τφ and τu. However, compared to registration and succeeding segmentation
only one additional parameter is needed for combined segmentation and registration. In future work we will
investigate the automatic determination of the parameters.

Validation of nonrigid registration algorithms is difficult and is an current area of research. Visual assessment
of the registration results indicated that both registration algorithms are able to determine adequate respira-
tory motion and organ deformation. Future work includes more thorough validation of registration accuracy.
Therefore, the presented method will be evaluated using software phantoms47 with known displacement fields or
patient data sets with extracted landmark trajectories.
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