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ABSTRACT

Respiratory dynamics poses a main source of error in radiotherapy of thoracic tumors. Development and opti-
mization of methods to adequately account for breathing motion require detailed knowledge of the dynamics and
its impact on e. g. the dose delivered by radiation. Thus, computer aided modeling and model based simulation
of respiratory motion gains in importance.
In this paper a biophysical approach for modeling lung motion is described. Main aspects of the process of
lung ventilation are identified and outlined as the starting point of modeling. They are formulated as a con-
tact problem of linear elasticity theory. The resulting boundary value problem is solved using Finite Element
Methods (FEM). 4D (= 3D+t) CT image data are used to evaluate the modeling approach. Model based three-
dimensional vector fields representing respiratory motion are computed for different patients. Simulated motion
patterns of inner lung landmarks like prominent bifurcations of the bronchial tree and the tumor mass center
are compared with corresponding motion patterns observed in the 4D CT data. The influence of geometrical
and biomechanical parameters like mesh quality and values of elasticity constants on the modeling process is
investigated.
Differences between model based predicted landmark positions and corresponding landmark positions identi-
fied interactively are mostly within the variability of interactive landmark positioning across multiple observers
(interobserver variability). The impact of geometrical and biomechanical parameters on resulting vector fields
is fairly small. Outcomes suggest that FEM state an adequate strategy to model aspects of the physiology of
breathing.
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1. INTRODUCTION

Radiation therapy aims at high tumor control and low normal tissue complication probabilities. Therefore
the dose distribution should be focused on tumorous tissue, avoiding especially organs at risk. In current
clinical practice identifying tissue to be irradiated and organs at risk is mostly based on three-dimensional (3D)
imaging (in general computed tomography (CT)). But 3D imaging provides only for a static snapshot of the
patient’s anatomy. Consequently radiation therapy suffers from missing information regarding organ and tumor
mobility. To ensure an adequate dose distribution within the moving tumor usually the volume to be irradiated
is expanded.1 This also increases the volume of irradiated healthy tissue and the likelihood of treatment-related
complications becomes larger. This in turn limits attempts to escalate the dose delivered to the tumor in order
to increase tumor control.

The problem becomes especially challenging in radiation therapy of thoracic tumors: Due to respiration lung
tumors and organs at risk undergo motion of the magnitude of several centimeters.2, 3 Recently a variety of
techniques to explicitly account for respiratory dynamics has been proposed (breath-hold techniques, respiratory
gating, real-time tumor tracking). But, implementation and optimization of such techniques require detailed
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knowledge about respiratory dynamics and its impact on the dose delivered by radiation and resulting thoracic
dose distributions.

Consequently, computer aided modeling and model based simulation of respiratory motion gains in impor-
tance: It helps to get a deeper understanding of the respiratory motion inside the human body; and in addition
resulting simulations can be applied to problems of direct clinical relevance, e. g. dose accumulation.4 Different
approaches are proposed in the literature. Often non-linear registration methods are applied to images acquired
at different breathing phases to estimate respiratory motion fields.3, 5–7 In this case, underlying assumptions
usually concern image-related aspects; physiological and anatomical processes are not taken into consideration.
As an example in Ehrhardt et al.3 and Handels et al.7 we presented a non-linear registration method based on
the optical flow constraint equation, that is, gray values of anatomically corresponding voxels are assumed to
be constant over time. In this study we aim at modeling respiratory motion taking the physiology of breathing
as modeling starting point. As an approved method in biophysical modeling we therefore apply Finite Element
Methods (FEM). Previously e. g. Sundaram et al.8 proposed an approach to modeling lung motion by means of
FEM. They suggest an FEM-based registration approach assuming occurring deformations to be linear-elastic
and taking into account normalized cross-correlation as similarity measure of fixed and deformed image. An
other FEM-related approach is given by Santhanam et al.9 accounting for PV relations in the lungs and limiting
motion by direction constants. The reference to the physiology of breathing does not seem to be immediately
apparent for these approaches. In comparison, DeCarlo et al.10 proposed an approach which suggest itself:
Using a two compartment model they try to simulate the process of lung ventilation by applying pressure forces
to the surfaces of the lungs and the chest wall. Penetration of lung and chest wall cavity is avoided by collision
detection. In the pilot study they used a simplified lung model which is defined in 2D; the shape is loosely based
on the lung shape in a coronal view. A similar approach, but extended to 3D, is presented by Zhang et al.:11

Lung ventilation is also modeled by applying pressure forces to the lung surfaces; lung expansion is limited by
a second geometry representing the chest wall cavity. The implementation is based on contact elements of the
FEM software ANSYS (ANSYS Inc., Canonsburg); no further implementation details on the contact elements
are presented. The feasibility of the approach is shown by means of 3D lung models extracted from a breath-hold
CT at end-expiration and at deep-inspiration.

Inspired by the work of Zhang et al.11 we aim to refine their modeling approach. In this study we describe
in detail the modeling approach and its reference to the physiology of breathing. In addition to Zhang et al. we
deduce the corresponding contact problem of linear elasticity. The problem is solved by means of an augmented
Lagrangian algorithm using the FEM software COMSOL Multiphysics (COMSOL AB, Sweden). There is no
consensus in the values of lung tissue elasticity constants. For instance, Zhang et al.11 chose Young’s modulus E
to be 4 kPa and Poisson’s ratio ν = 0.35, whereas Sundaram et al.8 chose E = 0.1 kPa and ν = 0.2. Therefore we
analyze the impact of different values of elasticity constants (biomechanical parameters) on the modeling process.
The impact of geometrical parameters (mesh quality) is considered as well. Previous literature especially suffers
from missing evaluation data. For instance, DeCarlo et al.,10 Zhang et al.,11 and Santhanam et al.9 presented no
quantitative evaluation data. Sundaram et al.8 only used 2D MR images with low spatial resolution. Recently
the development of 4D imaging opened up the possibility to measure motion of inner organs and tumors and,
consequently, to verify modeling approaches. In this study we use 4D (= 3D+t) CT image data with high spatial
and temporal resolution for the evaluation of modeling accuracy. For evaluation purposes we compare model
based predicted positions of inner lung landmarks and corresponding landmark positions identified interactively.

2. METHODS AND MATERIALS

4D data sets open up the possibility to measure breathing motion of inner organs (e. g. the lungs) and tumors.
Depending on image quality and resolution, they enable the verification of respiratory motion modeling ap-
proaches. In this study we use spatially and temporally high resolved 4D CT image data of lung tumor patients.
Patients were examined with a 16-slice CT scanner (Brilliance, Philips Medical Systems, Cleveland) in cine
mode. For each patient between 15 to 25 scans per couch position were acquired continuously (gantry rotation
time: 0.5 s, dead time between scans: 0.25 s). In-plane resolution was between 0.94×0.94 and 0.98×0.98 mm2,
slice thickness was 1.5 mm. For further data acquisition details see Low et al.12 and Lu et al.13 The resulting
spatiotemporal series of CT scans (each scan covering only a part of the thorax for a given breathing phase!) were
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used to reconstruct 4D CT data sets representing a series of 3D CT images (each covering the whole thorax) for a
scale of user-defined breathing phases. We chose the temporal resolution to be 10 to 14 breathing phases sampled
equidistantly over the breathing cycle. Reconstruction was accomplished by an optical flow based reconstruction
method.14–16 In contrast to other reconstruction methods12 motion artifacts are reduced significantly; hence the
image data provide a solid foundation for motion analysis and model verification. In this study four patient
data sets with different breathing-related motion amplitudes and tumor locations are considered for evaluation
purposes.

2.1 Modeling approach

Starting point of modeling is the process of lung ventilation. The lungs themselves are not actively moving. Each
lung is located in the pleural sac build up by two membranes called the pleurae. Outer pleura (parietal pleura) is
adherent to the internal surface of the thoracic cavity and the diaphragm. Inner pleura (visceral pleura) covers
the lung and is adherent to its surface. Parietal and visceral pleura are joined together at the root of the lung.
The space enclosed is known as the pleural cavity. It is subject to a negative pressure (the intrapleural pressure)
and filled with a fluid. Due to the negative pressure the pleurae are in close contact. The contact is frictionless
due to the fluid within the pleural cavity. During breathing the thoracic cavity is expanded by contraction of the
diaphragm and outer intercostal muscles. This causes changes in the intrapleural pressure which acts as a force
upon the lung surface. Hence lung expands, and during this process the visceral pleura is sliding frictionlessly
down the internal surface of the thoracic cavity.

This process is modeled as a contact problem of elasticity theory. A uniform negative pressure (intrapleural
pressure) is applied to a lung surface (except for the region of the root of the lung, which is assumed to be
fixed) representing some initial state of breathing; we choose the initial state of breathing to be the state of
end-expiration (EE). The pressure magnitude is increased gradually starting with a zero pressure. Increasing
the pressure causes the lung to expand whereas expansion is limited by a geometry representing the lung shape
at a final state of breathing; we choose the final state to be end-inhalation (EI). Principle and terminology
are illustrated in fig. 1. We aim for a state in which the initial lung geometry deformed by the intrapleural
pressure nearly matches the limiting geometry. This state should be an equilibrium state, i. e. external forces
should be balanced out by inner lung reacting forces specified by the Cauchy stress tensor σ. Given equilibrium
the corresponding deformation field u : R3 → R3 is searched for. u is interpreted to be an estimation of the
inner lung motion field during breathing (here: from EE to EI). As no volume forces are modeled equilibrium is
characterized by:

div σ = 0 (1)

Lung tissue is assumed to be an isotropic linear elastic and homogeneous medium; hence the constitutive equation
is given by generalized Hooke’s law:

S = C (E, ν) ε (2)

whereas
ε =

1
2

(∇u + ∇uT + ∇uT∇u
)

(3)

represents the Green-Lagrange strain tensor, S denotes the 2nd Piola-Kirchhoff stress tensor, and C (E, ν) is
the elasticity tensor which depends on two elastic constants (we choose E: Young’s modulus and ν: Poisson’s
ratio). Lung volume changes are in the order of 20 % of the lung volume at EE within a breathing cycle, i. e.
large deformations are expected to occur; therefore Green-Lagrange strain tensor is used which enables for large
deformation analysis. Green-Lagrange strains and 2nd Piola-Kirchhoff stresses are defined with reference to the
undeformed state (initial state). They are linked to the the deformed state by σ = (1/ detF) F S FT whereas
F = ∇u + I represents the deformation gradient. Equations 1 to 3 form the governing equations of the problem
to be solved. The problem specification is completed by the boundary conditions: No displacements are allowed
at the root of the lung, and the limiting geometry is also fixed:

u = 0 for the root of the lung and the limiting geometry (4)

No penetration of deformed initial lung geometry and limiting geometry should occur. This states a contact prob-
lem (here: frictionless contact) which yields additional boundary conditions to be fulfilled on the deformed initial
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Root of the lung
(assumed to be fixed)

Lung surface at the initial state of
breathing (= isceral pleura)

Pleural caily

Limiting lung geometry, given by
lung surface at a fmal breathing

phase (= parietal pleura)

nonnal
gap
distance

negative pressure to
force lung expansion

(= intrapleuralpressure)

Figure 1. For illustration of the modeling approach and the terminology used. The normal gap distance specifies the
distance between deformed initial lung surface and limiting geometry surface; it is determined by orthogonal projection.
Note that normal vector points outwards from the deformed initial lung surface.

geometry surface. These boundary conditions are known as Signorini conditions :17 In case of contact between
deformed initial lung geometry surface and limiting geometry surface penetration is prevented by introducing
compressive contact forces:

g ≥ 0 (5)

p contact ≤ 0 (6)

p contact · g = 0 (7)

whereas g denotes the normal gap distance, i. e. the distance between the deformed initial geometry surface
and the limiting geometry surface (g > 0: separation, g = 0: contact, g < 0: penetration), and p contactn are
the contact forces with n the normal vector pointing outwards the deformed lung surface (see fig. 1). Contact
pressure and intrapleural pressure together define the stress boundary conditions:

σn = (p intrapl + p contact)n (8)

(p intrapl ≥ 0: intrapleural pressure). Equations 1 to 8 represent the boundary value problem to be considered.

2.2 Implementation and evaluation

Given the weak formulation of the boundary problem described, it can be solved using Finite Element Methods.
In this study we used the FEM software COMSOL Multiphysics. The contact conditions stated by eq. 5 to 7
are satisfied using an augmented Lagrangian method, which means the system is solved in a segregated way: In
a first step the problem is solved for the displacement variables keeping the contact pressure constant. After this
the contact pressure is solved for while keeping the displacement variables fixed. These two steps are iterated
until the contact conditions are satisfied for the prescribed intrapleural pressure. For further details regarding
the augmented Lagrangian method see e. g. Bertsekas18 or Zienkiewicz et al.19

In a first part of the study we investigate the influence of biomechanical and geometrical parameters on the
modeling process. The impact of the elasticity modulus E and Poissons ratio ν upon the intrapleural pressure
required to reach the state in which deformed initial geometry nearly matches the limiting geometry is analyzed.
Success criterion is a ratio between the limiting lung geometry volume and the deformed initial lung geometry
volume of more than 0.99; as no penetration is allowed the ratio is between 0.99 and 1.0 if the criterion is fulfilled.
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According to parameter values proposed in previous literature8, 11 the values range from 0.25 to 1.0 kPa for the
elasticity modulus and 0.1 to 0.4 for Poisson’s ratio. Increasing elasticity modulus E and/or Poisson’s ratio ν
produces stiffer response to external forces; thus higher E and ν values should require higher pressures to reach
the volume ratio aimed for. Given an isotropic linear elastic medium loaded uniformly the relationship between
pressure change and volume change (subjected to E and ν) can be stated as:

dp (E, ν) = −dV

Vi
· E

3 (1 − 2ν)
(9)

(dp: pressure change; dV : volume change; Vi: volume of the undeformed initial lung geometry). In the present
case, the contact pressure acts only in case of contact; consequently the pressure applied is not uniformly in a
strict sense. The question arises to what extent eq. 9 allows for an estimation of the pressure required to reach
a volume ratio of 0.99; this is investigated. Furthermore, given convergence the influence of different values
of E and ν on the displacement field u is analyzed. Therefore the initial, undeformed domain is discretized
by voxelization (voxel dimensions 1×1×1 mm) and corresponding displacement vectors computed are compared
with each other for different E and ν values. The studies are executed at a “normal” mesh quality level. We use
tetrahedrons as finite element type. Element quality is determined using an aspect ratio measure suggested by
the COMSOL package:

q = 72 ·
√

3 · V

(
∑

i=1...6 l2i )
3/2

(10)

whereas V is the volume element and li are the tetrahedron edge lengths. The impact of decreasing meshing
quality on the modeling results is analyzed as well. Again corresponding voxel displacement vectors are compared,
now varying mesh element size while keeping elastic constants fixed (here: E=500 kPa, ν=0.3). Increasing mesh
element size means decreasing element quality. Mesh quality is defined by the minimal element quality. This first
part of our study is carried out by means of a simplifying mathematical phantom of the lung geometry in the
style described by Staniszewska:20 the shape of the lung approximates to that of a quarter of an ellipsoid. The
analytical description of the phantom shape enables for the use of the build-in CAD tool of the FEM Software; as
well meshing is done by a build-in mesh generator. Mesh quality values considered vary between 0.21 (“extremely
fine mesh”) and 0.06 (“extra coarse mesh”) whereas 0.17 is the mesh quality for a “normal mesh”.

The second part of the study is to generate and evaluate patient specific models based on the 4D CT image
data. Initial lung geometry and limiting geometry definitions are extracted from CT image data. This requires
additional preprocessing steps: The lungs are segmented in the CT image data at EE and EI. Region growing
techniques and morphological operators are applied for segmentation; if necessary, the segmented structures
are corrected manually. Based on the segmented data, triangulated 3D surface models are generated using
the Marching Cubes algorithm.21 The Marching Cubes Algorithm applied to binary images yields so called
‘staircase artifacts’ and a large number of triangles. As forces are determined to be surface forces directed along
the surface normals (see eq. 8) the modeling approach relies on realistic, smooth surfaces. Therefore the artifacts
are reduced by smoothing the surface models using Laplacian smoothing. The large number of triangles affects
computational costs; it is decreased by applying an edge collapsing algorithm. These preprocessing steps are
executed using MeVisLab (MeVis Research GmbH, Bremen, Germany). The smoothed and decimated surface
models are imported to the FEM software via STL files representing the geometry definitions. As before, we
use tetrahedral elements for meshing. Parameter values (elasticity modulus, Poisson’s ratio, final intrapleural
pressure, mesh size) are chosen according to the results of the studies based on the mathematical phantom.
Modeling accuracy is evaluated comparing simulated patient specific motion patterns of inner lung landmarks
and corresponding motion patterns observed in the 4D CT data. Landmarks are identified in the CT image
data at EE and EI by up to six medical experts. For each landmark the interobserver variability with respect
to landmark localization is determined. Based on the landmark location at EE which is identified by a “median
observer” (landmark position = median of x, y, and z coordinates with respect to the coordinates determined by
the multiple observers) we predict the landmark position at EI by adding the corresponding displacement vector
given by the computed displacement field u. Differences between landmark positions at EI as observed by the
median observer and corresponding positions predicted by the model are analyzed. Landmarks considered are
mass centers of the lung tumors and prominent bifurcations of the bronchial tree, see fig. 2 and table 1.
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I 0
left lung apex
first bifurcation of the right main bronchus

second bifurcation of the right main bronchus

first bifurcation of the right lower lobe bronchus

bifurcation of the left main bronchus

first bifurcation of the left upper lobe bronchus

first bifurcation of the left lower lobe bronchus

right lung base
left lung base

Figure 2. Inner lung landmarks to be considered for modeling accuracy evaluation. Not included in this figure are the
lung tumors mass centers. Tumors of the patients are located in the right upper lung lobe, the right lower lung lobe, the
left upper lung lobe near the chest wall, and in the left lower lobe.

Table 1. Motion amplitudes of the inner lung landmarks as observed in the 4D CT data and averaged over the four
patients (CC: craniocaudal; AP: anteroposterior; RL: lateral, right-left). Tumor mobility is evaluated by tracking the
tumor mass center based on tumor segmentations.

Motion amplitude (avg±std)
Landmark total CC AP RL
right lung apex 3.2±1.9 mm 0.3±0.1 mm 3.0±1.7 mm 1.0±0.9 mm
left lung apex 4.2±2.3 mm 0.7±0.6 mm 3.1±1.5 mm 2.7±1.7 mm
first bifurcation of the right main bronchus 5.6±2.6 mm 5.2±1.8 mm 2.0±1.8 mm 1.1±0.5 mm
second bifurcation of the right main bronchus 7.5±3.5 mm 5.8±2.4 mm 4.8±2.6 mm 0.8±0.6 mm
first bifurcation of the right lower lobe bronchus 9.4±2.7 mm 8.6±1.5 mm 2.5±1.5 mm 2.6±1.6 mm
bifurcation of the left main bronchus 8.6±3.6 mm 7.9±2.8 mm 2.9±2.0 mm 2.2±1.3 mm
first bifurcation of the left upper lobe bronchus 6.8±3.0 mm 5.5±2.4 mm 3.2±1.5 mm 2.5±1.1 mm
first bifurcation of the left lower lobe bronchus 7.6±3.1 mm 6.8±2.5 mm 2.9±1.5 mm 1.9±1.1 mm
right lung base 12.7±6.1 mm 10.3±2.9 mm 6.3±5.1 mm 4.1±1.8 mm
left lung base 16.5±4.5 mm 14.1±3.1 mm 7.7±2.7 mm 3.5±1.7 mm
Patient 1: tumor in the right upper lobe 2.2 mm 0.8 mm 2.0 mm 0.1 mm
Patient 2: tumor in the right lower lobe 12.0 mm 11.4 mm 1.9 mm 1.1 mm
Patient 3: tumor in the left upper lobe 6.8 mm 2.9 mm 6.1 mm 0.7 mm
Patient 4: tumor in the left lower lobe 19.6 mm 19.5 mm 0.3 mm 1.0 mm

3. RESULTS

3.1 Influence of biomechanical and geometrical parameters on the modeling approach

As described in section 2.2 the intrapleural pressure needed to meet the success criterion (ratio between initial
lung geometry volume and the limiting geometry volume of at least 0.99) depends on the values of the elasticity
constants: The higher the values of E and ν, the higher the pressure required to deform the lung geometry. This
is illustrated in fig. 3 by means of the mathematical phantom: the volume ratio is plotted against the intrapleural
pressure applied for different values of the elasticity modulus E and Poisson’s ratio ν. The figure shows, that
eq. 9 is an underestimate of the pressure needed to reach a volume ratio of at least 0.99; a higher pressure is
required. For further analyzes we considered the final pressure to be 2-times the pressure suggested by eq. 9 so
the success criterion is fulfilled for all data sets (phantom-based as well as patient data sets).

Still considering the mathematical phantom, the influence of different E and ν values on the displacement field
u can be shown to be fairly small: model based predicted voxel positions (= initial voxel position + corresponding
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Figure 3. Ratio between the volume of the deformed initial lung geometry and the limiting geometry volume, plotted
against the pressure applied (except for contact pressure, i. e. only the “intrapleural pressure” is shown here). The higher
the values of the elasticity modulus E and Poisson’s ratio ν, the higher the pressure needed to deform the lung geometry.
Vertical lines indicate the pressure sufficient to overcome the volume difference between initial and limiting lung geometry
according to eq. 9 (1: E = 1 kPa, ν = 0.4; 2: E = 1 kPa, ν = 0.2; 3: E = 0.25 kPa, ν = 0.4; 4: E = 0.25 kPa, ν = 0.2); as
apparent underlying assumptions lead to an underestimation of the pressure required to fulfill the success criterion.

displacement vector) do not differ more than 0.5 mm for the E and ν values considered; no systematics can be
found regarding the relationship between E and ν values and the differences. This also counts for different
element sizes – given a minimum element quality of at least 0.17 (“normal” mesh quality level). Below this
no closed contact between limiting geometry surface and deformed initial lung surface can be achieved. This
means increased discretization errors (compared to discretization levels of “normal” or better) cause contact
identification to fail. Because decreasing element size results in a greater number of degrees of freedom (dof)
and higher computational costs (“normal” mesh quality: approx. 25.000 dof and 2 min for solving using a bi-
processor system with Intel Xeon dual-core processors; “extremely fine: approx. 230.000 dof, solving needs more
than five hours, same system), we use the “normal” mesh quality level for further study steps, i. e. for generating
the patient specific models based on the 4D CT image data. It should be noted that the higher complexity of
the patient specific lung geometries results in meshes consisting of a greater number of elements (approx. 40.000
to 70.000 dof). For the patient specific models solving times are approximately half an hour to one hour.

3.2 Evaluation of the modeling accuracy

Evaluating modeling accuracy is based on the patient specific models and the 4D CT image data as described
in section 2.2. For illustration a patient specific lung geometry at the initial situation (at end-expiration) and
the corresponding model based predicted lung shape at end-inspiration is shown in fig. 4. The gap distance
is visualized for the initial and the final situation color-coded; it appears that for this patient the distance
between initial and final lung surface is maximal in the region of the diaphragm due to a preponderance of
abdominal breathing (in comparison to thoracic breathing). In fig. 5 corresponding motion field estimates
(motion amplitudes) are visualized color-coded. Other distributions of the gap distance values and motion
amplitude values are possible due to other breathing types.

For the patients considered it can be shown that differences between model based predicted motion patterns
of inner lung landmarks and corresponding motion patterns observed by the median observer mostly are within
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Left lung at EE (i.e. the initial, the Deformed left lung (i.e. lung at the fmal
undefonned geometry) I situation, the predicted lung shape at El)

4

I I

I I

Figure 4. Left: the surface mesh of left lung at end expiration. Right: the surface mesh at simulated end inspiration. The
arrows indicate the direction of motion; the arrow length is proportional to the motion amplitude. The small pictures in
each right upper corner represent the distance between the surface of the lung to be deformed and the limiting geometry
surface (red: distance of up to 20 mm; dark blue: no distance, i. e. contact is present).

Figure 5. Color-coded visualization of computed displacement vector amplitudes (blue: small motion; red: motion of up
to 24 mm). Left: motion of the lung surface. Right: inner lung motion, illustrated by means of a coronal slice.

the interobserver variability in landmark positioning as determined for the observers. For the tracheal bifurcations
differences from 2 to 7 mm between predicted and observed landmark positions at EI are determined (mean
value: 4.4±1.6 mm); interobserver variabilities are between 2 and 14 mm (mean value: 7.0±3.7 mm). Model
based predicted and observed tumor positions at EI differ between 1.1 and 4.0 mm; no dependency between the
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Table 2. Differences (averaged over the four patients) between the landmark localization at end inspiration as determined
by model based prediction and the landmark position at EI as identified by a median observer (see text for definition).

Difference between model based prediction and
manual landmark localisation at EI (avg±std)

Landmark total CC AP RL
right lung apex 2.7±1.3 mm 1.3±1.2 mm 1.9±1.5 mm 0.2±0.2 mm
left lung apex 2.5±1.2 mm 0.6±0.9 mm 2.1±1.4 mm 0.4±0.3 mm
first bifurcation of the right main bronchus 5.3±0.1 mm 3.4±2.0 mm 2.6±2.5 mm 0.4±0.3 mm
second bifurcation of the right main bronchus 7.4±3.5 mm 2.1±0.8 mm 6.3±4.5 mm 1.1±0.7 mm
first bifurcation of the right lower lobe bronchus 4.3±2.0 mm 1.6±1.3 mm 1.1±1.1 mm 3.1±2.5 mm
bifurcation of the left main bronchus 2.9±2.2 mm 2.2±1.8 mm 1.6±0.9 mm 0.9±0.4 mm
first bifurcation of the left upper lobe bronchus 4.3±2.0 mm 1.7±2.2 mm 3.2±1.4 mm 1.3±0.9 mm
first bifurcation of the left lower lobe bronchus 3.2±1.9 mm 2.0±1.3 mm 1.2±1.2 mm 1.8±1.5 mm
right lung base 5.3±2.0 mm 3.9±1.9 mm 1.7±1.4 mm 2.6±1.4 mm
left lung base 6.6±3.1 mm 3.0±2.0 mm 4.1±2.1 mm 2.3±3.8 mm
Patient 1: tumor in the right upper lobe 2.0 mm 0.4 mm 1.4 mm 1.4 mm
Patient 2: tumor in the right lower lobe 1.1 mm 0.9 mm 0.6 mm 0.1 mm
Patient 3: tumor in the left upper lobe 2.9 mm 2.9 mm 0.0 mm 0.2 mm
Patient 4: tumor in the left lower lobe 4.0 mm 4.0 mm 0.1 mm 0.8 mm

Table 3. Interobserver variability regarding manual landmark positioning, listed for the bronchial tree bifurcations (iden-
tification of the tumor mass centers based on tumor segmentations is only done once). Values are averaged over the
patients data sets and the two breathing phases of end-expiration and end-inspiration.

Interobserver variability regarding
landmark positioning

Landmark total CC AP RL
right lung apex ±3.0 mm ±1.3 mm ±2.1 mm ±1.7 mm
left lung apex ±4.8 mm ±1.4 mm ±3.7 mm ±2.6 mm
first bifurcation of the right main bronchus ±3.5 mm ±1.5 mm ±2.2 mm ±2.3 mm
second bifurcation of the right main bronchus ±9.0 mm ±5.5 mm ±6.4 mm ±3.2 mm
first bifurcation of the right lower lobe bronchus ±9.7 mm ±6.5 mm ±5.1 mm ±5.0 mm
bifurcation of the left main bronchus ±4.7 mm ±3.6 mm ±2.4 mm ±1.8 mm
first bifurcation of the left upper lobe bronchus ±7.5 mm ±4.3 mm ±3.8 mm ±4.9 mm
first bifurcation of the left lower lobe bronchus ±2.6 mm ±1.5 mm ±1.7 mm ±1.4 mm
right lung base ±11.0 mm ±6.2 mm ±8.1 mm ±4.1 mm
left lung base ±14.2 mm ±6.8 mm ±10.9 mm ±6.2 mm

differences and the tumor motion amplitude (2 to 20 mm, see table 1) can be identified. Differences between
model based predicted and observed landmark location at EI are listed in table 2 for the different landmarks.
Corresponding interobserver variabilities are given by table 3.

4. DISCUSSION

We presented a biophysical approach for modeling respiratory lung motion implemented by Finite Elements
Methods. Using 4D CT data with high spatial and temporal resolution allows us for patient specific modeling
and evaluating modeling accuracy. Outcomes show that the accuracy of model based prediction of landmark
localization is comparable to manual landmark positioning: differences between model based predicted landmark
positions and corresponding localizations determined by a median observer are mostly within the interobserver
variability determined for the landmarks. Thus, Finite Element Methods state an adequate strategy to model
aspects of the physiology of breathing – provided that such aspects can be formulated as a boundary problem.
As denoted in the introduction there exist other approaches besides FEM for respiratory lung motion modeling.
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For instance in Ehrhardt et al.3 and Handels et al.7 we presented an optical flow based non-linear registration.
Discrepancies are apparent in motion patterns when comparing the approaches and corresponding motion field
estimates respectively. The question arises what motion field tends to be more realistic. Moreover, are occurring
differences of relevance with respect to issues of clinical importance like dose accumulation? These questions we
will address in future research.

We assumed lung tissue to be isotropic linear elastic and homogeneous. This requires a dimensioning of the
elastic constants (elastic modulus E, Poisson’s ratio ν). By means of a mathematical phantom we investigated the
impact of varying the values of the elastic constants on the modeling process. In previous literature a diversity of
E and ν values of lung tissue are listed. We showed that varying the values influences the computed displacement
fields (which are searched for) only very slightly. Thus, elastic constants dimensioning is of circumstantial
relevance given the described approach. It should be noted that lung tissue in fact behaves visco-elastically
(see e. g. Fung et al.22). Our assumption of lung tissue to be linear elastic is a simplifying assumption. This
also counts for the assumption that lung tissue is homogeneous. The lung contains different structures like
the bronchial tree, vessels and so forth. Therefore it is not a homogeneous medium. In future research we
will drop these simplifying assumptions. This in turn might increase computational costs. Resulting motion
field estimations will be compared to the simulations based on the simplified models. Will there be significant
differences?

In this study we evaluated modeling accuracy by means of inner lung landmarks identified manually by
multiple observers. Landmarks are identified in 4D CT data of high spatial resolution. Thus, the interobserver
variability determined (up to 1 cm) seems to be quite large. In order to rate appropriateness of approaches for
motion field estimation and especially to compare the different approaches the interobserver variability has to
be reduced (e.g. by supporting the observer by partially automatizing the landmark positioning) or landmark
positioning has to be automatized. Currently we are working on both these approaches.
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