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ABSTRACT

In this paper, we present a method to compute a statistical shape model based on shapes which are represented
by unstructured point sets with arbitrary point numbers. A fundamental problem when computing statistical
shape models is the determination of correspondences between the observations of the associated data set. Often,
homologies between points that represent the surfaces are assumed. When working merely with point clouds, this
might lead to imprecise mean shape and variability results. To overcome this problem, we propose an approach
where exact correspondences are replaced by evolving correspondence probabilities. These are the basis for
a novel algorithm that computes a generative statistical shape model. We developed a unified Maximum A
Posteriori (MAP) framework to compute the model parameters (’mean shape’ and ’modes of variation’) and the
nuisance parameters which leads to an optimal adaption of the model to the set of observations. The registration
of the model on the observations is solved using the Expectation Maximization - Iterative Closest Point algorithm
which is based on probabilistic correspondences and proved to be robust and fast. The alternated optimization of
the MAP explanation with respect to the observation and the generative model parameters leads to very efficient
and closed-form solutions for nearly all parameters. A comparison with a statistical shape model which is built
using the Iterative Closest Point (ICP) registration algorithm and a Principal Component Analysis (PCA) shows
that our approach leads to better SSM quality measures.
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1. INTRODUCTION

One of the central difficulties of analyzing different organ shapes in a statistical manner is the identification of cor-
respondences between the points of the shapes. As the manual identification of landmarks is not a feasible option
in 3D, several preprocessing techniques were developed to automatically find exact one-to-one correspondences
between surfaces which are represented by meshes.1–4 A popular method is to optimize for correspondences
and registration transformation as does the Iterative Closest Points (ICP) algorithm5 for point clouds. More
elaborate methods directly combine the search of correspondences and of the statistical shape model (SSM) for
a given training set.6, 7 The Minimum Description Length (MDL) approach to statistical shape modeling8, 9 is
such a method and has shown to come to good results. For computing a SSM using unstructured point sets,
however, the MDL approach is not well- suited because it needs an explicit surface information. Another inter-
esting approach proposes an entropy based criterion to find shape correspondences, but requires implicit surface
representations.10 Other works combine the search for correspondences with shape based classification11, 12 or
with shape analysis,13 however, these methods are not easily adaptable to multiple observations of unstructured
point sets. An interesting approach for unstructured point sets focuses only on the mean shape.14 In all cases,
enforcing exact correspondences for surfaces represented by unstructured point sets leads to variability modes
that not only represent the organ shape variations but also artificial variations whose importance is linked to the
local sampling of the surface points. We argue that when segmenting anatomical structures in image data with
important noise, the extracted surface points only represent probable surface locations. Therefore we believe
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that a method for shape analysis should better rely only on the point locations and not on surface information.
In this paper, we address the problem of building a SSM for shape observations represented by unstructured
point sets with differing point numbers. In order to replace the assumption of exact correspondences, we pursue
a probabilistic concept by aligning the observations in a group-wise registration with the Expectation Maxi-
mization - Iterative Closest Point (EM-ICP) algorithm which proved to be robust, precise, and fast.15 The
SoftAssign algorithm16 has a probabilistic formulation which is closely related but differs in that it gives the
same role to the source and the registration target.
In our algorithm, we unify all steps for the SSM construction (computation of the registration transformations,
the correspondence probabilities, the mean shape and the modes of variation) in a unique global criterion. This
is realized by a Maximum a Posteriori (MAP) estimation of the model and observation parameters. We compute
the SSM parameters which best fit the given data set by optimizing the global criterion iteratively with respect
to all model and observation parameters. A key part of our method is that we can find a closed-form solution for
almost each of the parameters. In particular, the approach solves for the mean shape and the variation modes
without the need of one-to-one correspondences as is usually required by the PCA.17

This article focuses on the validation of the work presented in 200718 where we showed that our SSM is robust
and leads to plausible results for synthetic data as well as brain structures. A comparison of our SSM and a SSM
based on exact correspondences in terms of the established measures “generalization ability” and “specificity” is
performed for evaluation.
The remainder of this paper is organized as follows: The main steps of our algorithm - the computation of all
model parameters (as well as all nuisance parameters) in a unified criterion - is described in section 2. In section
3, the experimental evaluation of the SSM is presented. Section 4 concludes the paper.

2. CONSTRUCTION OF THE STATISTICAL SHAPE MODEL

2.1. Model and Observation Parameters

In the process of computing the SSM, we distinguish strictly between model parameters and observation
parameters. The generative SSM is explicitly defined by 4 model parameters:

• mean shape M̄ ∈ R
3Nm parameterized by Nm points mj ∈ R

3,

• variation modes vp consisting of Nm 3D vectors vpj ,

• associated standard deviations λp which describe - similar to the classical eigenvalues in the PCA - the
impact of the variation modes,

• number n of variation modes.

Using the generative model Θ = {M̄, vp, λp, n} of a given structure, the shape variations of that structure can
be generated by Mk = M̄ +

∑n
p=1 ωkpvp with ωkp ∈ R being the deformation coefficients. The shape variations

along the modes follow a Gaussian probability with variance λp:

p(Mk|Θ) = p(Ωk|Θ) =
n∏

p=1

p(ωkp|Θ) =
1

(2π)n/2
∏n

p=1 λp
exp

(

−
n∑

p=1

ω2
kp

2λ2
p

)

. (1)

with Ωk ∈ R
n being a vector consisting of the deformation coefficients ωkp associated with shape variation

Mk. In order to account for the unknown position and orientation of the model in space, we introduce the
random (uniform) rigid or affine transformation Tk. A model point mj can then be deformed and placed by
Tk � mkj = Tk ∗ (m̄j +

∑
p ωkpvp). Finally, we specify the sampling of the model surface: Each sampling

(e.g. observation) point ski is modeled as a Gaussian measurement of a (transformed) model point mkj . The
probability of the observation p(ski|mkj , Tk) knowing the originating model point mkj is given by
p(ski|mkj , Tk) = (2π)−3/2σ−1 exp(− 1

2σ2 (ski − Tk � mkj)T .(ski − Tk � mkj). As we do not know the originating
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model point for each ski, the probability of a given observation point ski is described by a Mixture of Gaussians
and the probability for the whole scene Sk becomes:

p(Sk|M, Tk) =
Nk∏

i=1

1
Nm

Nm∑

j=1

p(ski|mkj , Tk). (2)

We summarize the observation parameters as Qk = {Ωk, Tk}. Notice that the correspondences are hidden
parameters that do not belong to the observation parameters of interest.

2.2. Derivation of the Global Criterion Using a MAP Approach

When building the SSM, we deal with the inverse problem of the approach in section 2.1: We have N observations
Sk ∈ R

3Nk , and we are interested in the parameters linked to the observations Q = {Qk} as well as the unknown
model parameters Θ. In order to determine all parameters of interest, we optimize a MAP estimation on Q and
Θ rather than an Maximum Likelihood (ML) estimation to take into account that Q and Θ are not independent.

MAP = −
N∑

k=1

log(p(Qk, Θ|Sk)) = −
N∑

k=1

log
(

p(Sk|Qk, Θ)p(Qk|Θ)p(Θ)
p(Sk)

)

. (3)

As p(Sk) does not depend on Θ and p(Θ) is assumed to be uniform, the global criterion integrating our unified
framework is the following:

C(Q, Θ) = −
N∑

k=1

(log(p(Sk|Qk, Θ)) + log(p(Qk|Θ))) . (4)

The first term describes the ML criterion (2) whereas the second term is the prior on the deformation coefficients
ωkp as described in (1). Dropping the constants, our criterion simplifies to C(Q, Θ) ∼∑N

k=1 Ck(Qk, Θ) with

Ck(Qk, Θ) =
n∑

p=1

(

log(λp) +
ω2

kp

2λ2
p

)

−
Nk∑

i=1

log

⎛

⎝
Nm∑

j=1

exp
(

−‖ski − Tk � mkj‖2

2σ2

)
⎞

⎠ . (5)

This equation is the heart of the unified framework for the model computation and its fitting to observations. By
optimizing it alternately with respect to the operands in {Q, Θ}, we are able to determine all parameters we are
interested in. Starting from the initial model parameters Θ, we fit the model to each of the observations (section
2.3). Next, we fix the observation parameters Qk and update the model parameters (section 2.4). Some terms
will recur in the different optimizations, so we introduce the following notation for the derivation of the second
term ξkij(Tk, Ωk, M̄ , vp, λp) = log

∑Nm

j=1 exp
(−‖ski−Tk�mkj‖2

2σ2

)
with respect to one of the function’s parameters

(let’s say x):

∂ξ

∂x
=

Nm∑

j=1

γkij
(ski − Tk � mkj)T

σ2

∂(ski − Tk � mkj)
∂x

(6)

where the weights γijk = exp
(
− ‖ski−Tk�mkj‖2

2σ2

) [∑Nm

l=1 exp
(
− ‖ski−Tk�mkl‖2

2σ2

)]−1

are sometimes interpreted as
soft labels/correspondences.

2.3. Mapping the Model to the Observations

2.3.1. Optimization with respect to the Transformations

The registration transformation is computed with an affine EM-ICP algorithm. In the following, we summarize
the mathematical steps, for more details please refer to the work of Granger et al. about the rigid EM-ICP.15

As no closed form solution exists for the optimization of criterion (2), we employ an EM algorithm where the
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correspondence probabilities between Sk and M are modeled as the hidden variable Hk ∈ R
Nk×Nm . An instance

point ski corresponds to a model point mj with probability E(Hkij ). By computing the expectation of the
log-likelihood of the complete data distribution with Tk fixed, we find in the expectation step E(Hkij ) = γkij .
As defined above, the γkij represent the weights of each pair (ski, mj) in the criterion. Next, Tk = {Ak, tk}
is computed in the maximization step by maximizing the global criterion in (5) with all γkij fixed in a closed-
form solution. Here, Ak ∈ R

3×3 is the affine transformation matrix and tk ∈ R
3 the translation vector. The

implementation of the EM-ICP algorithm is realized in a multi-scaling frame regarding the variance. The EM-
ICP is initialized with a great variance to ensure that shape positions, rotation and sizes are aligned. The
variance is then reduced in each iteration to cover for shape details. σinitial and its decrease rate have to be
carefully adapted to the data at hand (σfinal should be in the order of the average point distance).

2.3.2. Optimization with respect to the Deformation Coefficients

The observation parameter Tk and Θ are fixed, and we compute the ωkp which solve ∂Ck(Qk, Θ)/∂ωkp = 0. This
leads to a matrix equation of the form

Ωk = (Bk − σ2Λnn)−1	dk (7)

with

dkp =
Nk∑

i=1

Nm∑

j=1

γkij(ski − tk − Akm̄j)T Akvpj , dkp ∈ R

and

bkqp =
Nk∑

i=1

Nm∑

j=1

γkijv
T
qjA

T
k Akvpj , bkqp ∈ R, bkqp = bkpq.

Hence, in order to compute the ωkp, for each k the matrix Bk and the vector 	dk have to be evaluated.

2.4. Learning the Model from the Observations

2.4.1. Optimization with respect to the Standard Deviations

The computation of the optimal standard deviation λp with parameters M̄, vp and Qk fixed is simply:

∂C(Q, Θ)
∂λp

=
N∑

k=1

(
1
λp

− ω2
kp

λ3
p

)

= 0 ⇔ λ2
p =

1
N

N∑

k=1

ω2
kp. (8)

2.4.2. Optimization with respect to the Mean Shape

Setting ∂C(Q, Θ)/∂m̄j to 0 and using the general derivation presented in (6), we find

m̄j =

(
N∑

k=1

Nk∑

i=1

γkijA
T
k Ak

)−1 N∑

k=1

Nk∑

i=1

γkijA
T
k (ski − tk − Ak

n∑

p=1

ωkpvpj) (9)

2.4.3. Optimization with respect to the Variation Modes

The parameters λp, M̄ and Qk are fixed. Let us first define the matrix V ∈ R
3Nm×n containing the variation

modes 	vp ∈ R
3Nm in its columns. The 	vpj ∈ R

3 referred to in the equations are the variation mode information
associated to point m̄j . As we want the variation modes to be orthonormal, we add a Lagrange multiplier by
introducing the symmetric matrix Z ∈ R

n×n to our global criterion in the form: Λ = C + 1
2 tr
(
Z(V T V − In×n)

)
.

Deriving the Lagrangian with respect to 	vpj gives in the rigid case

∂Λ
∂	vpj

=
n∑

q=1

zqp	vqj −
n∑

q=1

bpq	vqj + qpj
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where

	qpj =
1
σ2

N∑

k=1

Nk∑

i=1

γkij(ski − tk − Akm̄j)T ωkpAk, qpj ∈ R
3

and

bpqj =
1
σ2

N∑

k=1

Nk∑

i=1

γkijωkqωkpI3×3 bpqj ∈ R
3×3.

Hence we find
∑n

q=1 	vjq(zqp + bpqj) = 	qjp. We approach the problem regarding each of the Nm bands [V ]{j} ∈
R

3×n of matrix V ∈ R
3Nm×n separately with [V ]{j} = [	vj1, ..., 	vjq , ..., 	vjn] and [V ]{j} (Bj + Z) = [Q]{j}. We

iterate the following two steps until ‖V t+1 − V t‖2 ≤ ε.

1. For Z known, we compute V : [V ]{j} = [Q]{j} (Bj + Z)−1 for all model point indices j. To enforce V to be
orthonormal, we apply first a singular value decomposition V = USRT and then replace V by URT .

2. For all [V ]{j} known, we determine Z: Z = V T Q̃ with [Q̃]{j} = [Q]{j} − [V ]{j}Bj . As Z has to be
symmetric, we set Z ← 1

2 (Z + ZT ).

3. EXPERIMENTS AND RESULTS

In order to assess the quality of the SSM based on correspondence probabilities, we compared it to a SSM based
on exact correspondences built for the same training data set. In a first test, we apply the two SSMs to a synthetic
training data set which contains two distinguished shape classes (section 3.1). In a second test, we apply the two
SSMs to brain data and quantify the results by evaluating the two performance measures ’generalization ability’
and ’specificity’ (section 3.2).
The SSM based on exact correspondences is generated in a similar manner as proposed in4:

1. Group-wise registration using the ICP algorithm.

2. Computing the mean shape on the exact correspondences found by the ICP.

3. Applying a PCA to determine the variation modes.

In the following, it will be called SSM-ICP.

3.1. Correspondence Probabilities versus Exact Correspondences: A Case Study

We argue that the determination of correspondences between unstructured point sets is especially difficult when
one shape features a certain structure detail and the other one does not. For an experimental evaluation, we
generated a training data set containing two distinctive shape classes. The data set consisted of 9 ellipsoids
featuring a bump and 9 ellipsoids without bump. We deformed them with different affine transformations in
order to obtain varying ellipsoid shapes. For 4 observation examples, see figure 1.
We computed our SSM as well as the SSM-ICP for the ellipsoid data and compared the results. As initial mean
shape, we chose an observation of the class without bump. The respective resulting mean shapes and deforma-
tions according to the first mode of variation can be seen in figure 2.

Results: The SSM based on the EM-ICP models the whole data set, it is able to represent the ellipsoids featuring
a bump and those without as that deformation information is included in its variability model.
The SSM based on the ICP is not able to model the bump. This is due to the fact that the ICP only takes into
account the closest point when searching for correspondence, thus, the point on top of the bump is not involved in
the registration process. The EM-ICP, however, analyzes the correspondence probability of all points, therefore,
also the point on top of the bump is matched. We illustrated these two concepts in figure 3.
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Figure 1. Observation examples of a synthetic training data set featuring two distinctive shape classes (ellipsoids with
bump and ellipsoids without bumps).

a)

b)

Figure 2. Results of a SSM built on exact correspondences (a) and of a SSM built on correspondence probabilities (b)
for the training data shown in figure 1. Mean shape (middle), and the mean shape deformed with respect to the first
variation mode, left:M̄ − 3λ1�v1 and right:M̄ + 3λ1�v1.

1 2 1 2

ICP EM−ICP

Figure 3. One-to-one correspondence versus correspondence probabilities. Left: ICP registration, each point on contour
1 corresponds to the closest point on contour 2. Right: EM-ICP registration, each point on contour 1 corresponds with a
certain probability to all points on contour 2.

3.2. Generalization Ability and Specificity for a Brain Structure Data Set

In order to assess the quality of the generative SSM, we analyse the two established measures generalization
ability and specificity as proposed in19 for our SSM and the SSM-ICP. A good generalization ability is important
for recognition purposes as a SSM must be able to adopt the shape of a new - unseen - observation which comes
from the same (anatomical) structure type. The specificity of a SSM must be high for shape prediction purposes
as the SSM should only adopt shapes similar to the ones in the underlying training set.
The training data set for this experiment consists of N = 24 left segmented putamens (approximately 20mm×
20mm × 40mm) which are represented by min 994 and max 1673 points, see Figure 4a) and b) for some shape
examples. The MR images contain 255 × 255 × 105 voxels of size 0.94mm × 0.94mm × 1.50mm. The data was
collected in the framework of a study on hand dystonia.
We generated the SSM with the following parameters: Number of variation modes n = 18, initial sigma in the
EM-ICP σ = 4mm, variance multi-scaling factor of the EM-ICP 0.85, and 10 EM-ICP iterations which results
in a final σfinal = 0.92mm. Figure 4 shows the resulting mean shape and the deformations of the left putamen
according to the variation modes.
We generated a SSM-ICP for the same data set with again 18 eigenmodes.

The generalization ability is tested in a series of leave-one-out experiments. We analyse how closely
the SSM matches an unknown observation. The SSM is first aligned with the new observation. Then, equation
(7) is evaluated to find the deformation coefficients ωkp. The resulting coefficients are used to deform the aligned

Proc. of SPIE Vol. MI02  69144T-6



a)
b)

c)

Figure 4. Shape analysis of the putamen. a) CT-images with segmented left putamen. b) Observation examples of the
data set. c) Mean shape (middle) and its deformations according to the first variation mode (M̄ − 3λ1�v1 and M̄ +3λ1�v1).

Table 1. Shape distances found in generalization experiments (7 leave-one-out tests) with our SSM approach and with
the SSM-ICP approach.

SSM-ICP our SSM
5 variation modes
average mean distance + standard deviation in mm 0.634± 0.090 0.466 ± 0.104
average maximal distance + standard deviation in mm 4.478± 0.927 2.578 ± 0.729
10 variation modes
average mean distance + standard deviation in mm 0.623± 0.099 0.453 ± 0.102
average maximal distance + standard deviation in mm 4.449± 0.909 2.465 ± 0.690
18 variation modes
average mean distance + standard deviation in mm 0.610± 0.089 0.447 ± 0.101
average maximal distance + standard deviation in mm 4.388± 0.930 2.426 ± 0.712

Table 2. Shape distances found in specificity experiments (500 random shapes) with our SSM approach and with an
ICP+PCA approach using 18 variation modes.

SSM-ICP our SSM
average mean distance + standard deviation in mm 0.515 ± 0.117 0.452 ± 0.020

SSM in order to optimize the matching. Finally, the distance of the deformed SSM to the left-out observation is
measured.
We performed this test for 7 different unknown observations and different numbers of variation modes. The
results obtained by our SSM and the SSM-ICP are shown in table 1.

In order to test the specificity, we generated random shapes x which are uniformly distributed with σ equal to
the standard deviation of the SSM. We then computed the average and maximal distances of the random shapes
to the closest observation in the training data set. The results for both SSMs and 500 random shapes can be
seen in table 2.

Results: For both performance measures, our SSM achieved superior results compared to the SSM-ICP. Es-
pecially the values of the maximal distance show the benefit of the new approach.
In the leave-one-out experiment, we showed that the number of variation modes is controlling the accuracy of
the deformed SSM. The distance decreases when more variation modes are used. Also, the percental distance
decrease between the results with 5 variation modes and the results with 18 variation modes is slightly less with
the SSM-ICP (about 5% with our SSM and 3% with the SSM-ICP). These results suggest that our SSM is better
able to cover for shape details.
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4. DISCUSSION

We proposed a novel algorithm to generate a statistical shape model for unstructured point sets. The computa-
tion of the SSM is based on correspondence probabilities instead of exact correspondences. The approach does
not need any surface information, it can be used for non-spherical shapes and can be adapted to applications
on data sets with different topologies as the connectivity between points does not play a role. We developed a
mathematically sound and unified framework for the computation of model parameters and observation param-
eters and succeeded in determining a closed form solution for optimizing the associated criterion alternately for
all parameters. Experiments showed that our algorithm works well and leads to plausible results for different
kind of data. It seems to be stable even for small numbers of observations. In an experimental evaluation,
we compared the performance of our SSM to a SSM built on exact correspondences (Iterative Closest Points
and Principal Component Analysis) for the same data sets. On a data set featuring a typical correspondence
problem, our approach succeeded to compute a representing mean shape and variability model whereas the SSM
based on exact correspondences failed. In an experiment on real data, we showed that our approach leads to a
better accuracy for the two established SSM measures ’generalization ability’ and ’specificity’.
From a theoretical point of view, a very powerful feature of our method is that we are optimizing a unique
criterion. Thus, the convergence is ensured. However, the practical convergence rate has to be investigated more
carefully. For instance, a fast decrease of the multi-scale variance σ2 easily freezes the model in local minima.
For further validation, we intend to study other kinds of data (e.g. hippocampus or ganglion) whose shapes are
less convex than the putamen. Indeed, this type of data is typically requiring the use of SSMs for their automatic
segmentation. In order to ensure robustness, we will extend the distance measure in the EM-ICP to include the
normals.
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