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ABSTRACT

The mobility of lung tumors during the respiratory cycle is a source of error in radiotherapy treatment planning.
Spatiotemporal CT data sets can be used for studying the motion of lung tumors and inner organs during the
breathing cycle.

We present methods for the analysis of respiratory motion using 4D CT data in high temporal resolution. An
optical flow based reconstruction method was used to generate artifact-reduced 4D CT data sets of lung cancer
patients. The reconstructed 4D CT data sets were segmented and the respiratory motion of tumors and inner
organs was analyzed.

A non-linear registration algorithm is used to calculate the velocity field between consecutive time frames of
the 4D data. The resulting velocity field is used to analyze trajectories of landmarks and surface points. By
this technique, the maximum displacement of any surface point is calculated, and regions with large respiratory
motion are marked. To describe the tumor mobility the motion of the lung tumor center in three orthogonal
directions is displayed. Estimated 3D appearance probabilities visualize the movement of the tumor during the
respiratory cycle in one static image. Furthermore, correlations between trajectories of the skin surface and the
trajectory of the tumor center are determined and skin regions are identified which are suitable for prediction of
the internal tumor motion.

The results of the motion analysis indicate that the described methods are suitable to gain insight into the
spatiotemporal behavior of anatomical and pathological structures during the respiratory cycle.
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1. INTRODUCTION

Motion induced by breathing is an important uncertainty in radiotherapy planning of the thorax and upper
abdomen. During treatment planning the gross tumor volume (GTV) and clinical target volume (CTV) respec-
tively is outlined and a margin is added to account for intrafraction motion, interfraction motion, and setup error.
But, in current clinical practice radiation therapy planning is often based on a static 3D CT image data set of
the patient. The tumor volume and organs at risk are segmented in the static 3D CT image data. To ensure an
adequate dose distribution within the moving tumor standardized safety margins are added to the tumor volume
according to international guidelines.1 However, standard safety margins usually are defined without considera-
tion of individual motion patterns and the amount a lung tumor moves during breathing varies widely between
different patients.2 4D CT data sets enable to measure and to visualize the individual movement of lung tumors
caused by breathing and enable the patient–specific definition of safety margins. However, 4D medical image
computing methods and visualization techniques are needed to extract quantitative parameters characterizing
the different aspects of respiratory motion and to assist the physician in understanding the complex data.
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Furthermore, to account for respiratory motion by adding treatment margins to cover the motion of the tumor
is suboptimal, because this enlarges the volume of irradiated healthy tissue and consequently, the likelihood
of treatment related complications increases. Therefore, a main challenge in radiotherapy is to take breathing
motion into account and to adapt the treatment according to this motion. Various techniques have been proposed
to explicitly account for breathing motion during radiotherapy, like respiratory gating3,4 or robotic radiosurgery.5

But for implementation and optimization of these techniques a comprehensive knowledge about respiratory
dynamics is needed. In particular, a reliable biometric parameter correlated with breathing motion and an
accurate patient–specific spatiotemporal model of the respiratory motion is necessary to predict the target
position.

4D image data with high spatial and temporal resolution acquired during free breathing enable the detailed
examination of individual spatiotemporal breathing patterns. In this project, 4D CT image sequences of lung
cancer patients were acquired using a multi–slice CT in cine mode during free breathing. An optical flow based
temporal interpolation was used to generate artifact reduced 4D CT data sets.6 The reconstructed 4D CT images
are used for respiratory motion analysis and visualization. We present fully automated algorithms to estimate
organ motion and methods to extract quantitative parameters characterizing tumor and organ motion during
free breathing. Furthermore, different visualization techniques are used to present the extracted parameters.

2. MATERIAL AND METHODS

2.1. Image Acquisition and Image Reconstruction

In our approach, eight lung cancer patients were examined with a 16-slice CT scanner operated in cine-mode
for the investigation of lung tumor mobility. During the acquisition process the patients were instructed to
breathe naturally. The scanning of patients 1 to 4 was based on following protocol: The scanner was operated
in 12-slice-mode. The scanning spatial resolution was between 0.78 x 0.78 x 1.5 mm and 0.94 x 0.94 x 1.5 mm.
16 to 19 couch positions were investigated to ensure adequate coverage of the thorax. For each couch position
15 scans were acquired continuously. Synchronized spirometry measurements were acquired to associate the CT
scans with tidal volumes and breathing phase (inhalation or exhalation). The protocol for scanning patients 5 to
8 were modified slightly: The patients were scanned using 16-slice mode and acquiring 25 scans for each couch
position. The scanning spatial resolution was chosen to be 0.98 x 0.98 x 1.5 mm. For further data acquisition
details see Low et al.(2003)7 and Lu et al.(2005).8

The resulting spatiotemporal series of CT scans were used to reconstruct 4D CT data sets. A reconstructed
4D CT image data set represents a series of 3D CT data sets for a scale of user–defined tidal volumes. Each 3D
image covers the whole thorax and corresponds to a time point in the patient’s breathing cycle. In the standard
reconstruction approach the respiratory signal (i.e. spirometry record) is used to sort the acquired CT scans
into predefined respiratory phases based on the amplitude of the respiratory trace.8 However, free breathing
causes the problem that there are no acquired CT scans for exactly the user–defined tidal volume. Therefore,
data segments according to neighboring couch positions in the reconstructed 3D image represent different tidal
volumes and this induces artifacts in the reconstructed image similar to motion artifacts in 3D CT. To reduce
artifacts which were caused by choosing CT scans not exactly at the desired tidal volume an optical flow based
reconstruction method for 4D data sets was developed.6,9 The idea of the method is to generate interpolated
CT scans for exactly the user-defined tidal volume. Therefore, a temporal interpolation scheme was derived from
the optical flow equation.10 The method to reconstruct a 3D data set for a selected tidal volume consists of
two main steps: First, for each couch position the optical flow is determined between the two scans whose tidal
volumes neighbor the desired tidal volume and whose breathing direction is the same as the desired direction
(inhalation or exhalation). An optical flow based registration algorithm computes a velocity field describing the
motion of corresponding features. The calculated velocity field is then used to generate an interpolated CT scan
for the desired tidal volume. The interpolated data segments for each couch position are assembled to a 3D data
set for the selected tidal volume. Due to the different number of scans per couch position the reconstructed 4D
CT data sets consist of 10 3D images (patient 1 to 4) and 14 3D images (patient 5 to 8), respectively.



2.2. Modeling Respiratory Motion using Nonlinear Registration

The resulting 4D CT data sets were used to model and analyze the patient-related respiratory motion. Motion is
commonly described by a displacement vector field which links the location of each point in the current volumetric
frame to its location in the following frame. A large variety of automated algorithms exists to estimate organ
motion, including landmark–based methods,11,12 surface–based techniques,13,14 optical flow based methods15–19

and other intensity–based registration techniques, like block matching methods20,21 or B-spline deformations.22,23

In this study, an optical flow based nonlinear registration method is used to estimate the trajectory of every
point over the whole breathing cycle. The initial hypothesis of optical flow based methods is that pixel intensities
of time varying image regions remain constant. In our case, the 4D image intensity function I : IR3 × IR → IR
depends on the (time–dependent) spatial coordinate x ∈ IR3 and the tidal volume V ∈ IR: I(x(V ), V ). The
conservation of the intensity of points under motion is formulated in the expression that the total derivative of
the image intensity function is zero and thus, the measurement of image derivatives allows the recovery of image
velocity:15

v = −∇I
∂V I

‖∇I‖2
, (1)

where v = ( ∂x
∂V , ∂y

∂V , ∂z
∂V )T is the velocity field, ∇I the spatial image gradient and ∂V I the temporal image gradi-

ent. However, equation (1) is ill-posed and not sufficient to compute all components of the velocity vector.15,16

Only the motion component in the direction of the local brightness gradient of the image intensity function may
be estimated. As a consequence, the flow velocity cannot be computed locally without introducing additional
constrains. Furthermore, the optical flow equation (1) is only valid for ”small” displacements and therefore an
iterative update scheme is preferable.

In our implementation an iterative solution method similar to the demon’s registration17 is used to estimate
the velocity vi,j between two time frames I(x, Vi) and I(x, Vj). The velocity field v describes the displacement
or deformation of the image voxels and defines a transformation φ between the two images: φ(x) = x + v(x).
Thus, for a given point x in image I(x, Vi) the corresponding point x̂ in image I(x, Vj) is given by x̂ = φi,j(x),
where the transformation φ is defined by φi,j(x) = x + vi,j(x). The necessary regularization is done using a
Gaussian smoothing of this displacement field:

1. Initialize v0
i,j(x), k = 0.

2. Estimate the update of the velocity field by

uk+1
i,j (x) = −∇I(x, Vi)

(
I(x + vk

i,j(x), Vj)− I(x, Vi)
)

‖∇I(x, Vi)‖2 + α2
(
I(x− vk

i,j(x), Vj)− I(x, Vi)
)2 (2)

3. Update the velocity field and perform a Gaussian smoothing:

vk+1
ij (x) = Gσ ?

(
vk

i,j(x) + uk+1
i,j (x)

)
. (3)

4. Stop, if the squared distance between image I(x, Vi) and deformed image I(x+vk
i,j(x), Vj) was not reduced

for κ iterations or if a maximal number of iterations is reached. Otherwise, let k := k + 1 and go to 2.

The term α2
(
I(x + vk

ij(x), Vj)− I(x, Vi)
)2 in eq. (2) stabilizes the formula when the gradient norm is small

and α is a homogenization factor to limit the normalized displacement in each iteration step (see Cachier et
al.(1999)24 for details). In our application we choose α = 0.5 in order to limit the maximum displacements per
iteration to the voxel-size. The standard deviation of the Gaussian kernel Gσ was set to σ = 1.5. A calculated
velocity field is visualized in fig. 1.

In our application, the goal is to determine corresponding points in a sequence of images I(x, V0), I(x, V1),
. . ., I(x, Vn−1) acquired throughout the respiratory cycle. Two approaches are possible to trace the motion of a
point in a temporal image sequence:



Figure 1. Visualization of the 3D motion field of the lung. Here the lung motion field of patient 5 estimated between
the phase of maximum exhalation and maximum inhalation is visualized. For an improved graphical representation the
motion field has been thinned out.

Registration of consecutive frames: In the first approach, adjacent images I(x, Vi) and I(x, Vi+1) (i =
0, . . . , n− 2) in the temporal image sequence are registered to estimate the velocity fields vi,i+1. Then, starting
in image I(x, V0) the trajectory of an point x is determined by concatenating the transformations φ0,1, φ1,2 to
φn−2,n−1 associated with the velocity fields:

X =


x

φ0,1(x)
φ1,2 ◦ φ0,1(x)

...
φn−2,n−1 ◦ · · · ◦ φ0,1(x)

 .

Because the velocity vectors are estimated for the discrete voxel lattice an interpolation is necessary. Interpolation
errors are summed up and this affects the result. Otherwise, because the displacement between adjacent time
frames is small an robust estimation of the velocity fields is possible. Furthermore, using this approach the
regularization in eq. (2) can be done by a spatiotemporal Gaussian smoothing to limit the possible differences
between magnitude and direction of spatially and temporally neighboring velocity vectors. The periodic nature
of breathing can be addressed by implementing periodic boundary conditions for the Gaussian smoothing in time
direction (see also Ehrhardt et al.(2007)10).

Registration with a reference frame: In this approach, the points in the sequence of images I(x, V0),
I(x, V1), . . ., I(x, Vn−1) are mapped to the corresponding points in a reference image. The end–expiration
image I(x, V0) is used as the reference image for all registrations, since recent studies indicate that the end–
expiration is in generally the most reproducible phase in the breathing cycle.25 By successive application of the
registration algorithm the vector fields v0,1 through v0,n−1 are computed that map I(x, V1) through I(x, Vn−1)
to the reference image I(x, V0). The trajectory of an point x in image I(x, V0) is calculated by applying the
transformations φ0,i and no concatenation of transformations is necessary:

X =


x

φ0,1(x)
φ0,2(x)

...
φ0,n−1(x)

 .



However, using this approach a regularization of the registration process in temporal direction is harder to realize.
Furthermore, large displacements are possible between distant frames which could not easily be captured by the
registration process. Tissue motion during the respiratory cycle is assumed to be a smoothly continuous process
and the difference between consecutive deformation fields v0,i and v0,i+1 is expected to be relatively small.
Therefore, the velocity field v0,i which maps the reference frame to image I(x, Vi) is used as initial estimate for
registering the reference frame to I(x, Vi+1), i. e., when computing the velocity field v0,i+1. In this way, suitable
starting values are given for the registration processes. However, the hypothesis of optical flow, the conservation
of the intensity of points under motion, is rather acceptable for adjacent image frames than for temporal distant
frames since e.g. the compression of the lung tissue leads to a change of intensities in the CT images throughout
the respiratory cycle.

The computed volumetric motion model can be used to generate geometrical deformation models of organ
surfaces. Therefore, a geometrical representation of the organ surface, e.g. a triangle mesh, is extracted from
the selected reference frame. Then, each vertex of the geometric representation can be assigned a trajectory or
the vertex coordinates are deformed using the deformation fields determined by the intensity–based registration
processes to visualize the motion.

In this study, both approaches were used to determine trajectories of surface points on the lung and the skin.
Although a comparison and a quantitative evaluation of both approaches is beyond the scope of this paper, this
topic is discussed again in section 3.

2.3. Analysis of Respiratory Motion

In order to allow the analysis of respiratory motion the segmentation of structures of interest is necessary.
Therefore, the tumor, the lung, the skin and the bronchial tree are segmented for any reconstructed tidal volume.
For patient 1 to 4 these segmentations were performed using region growing techniques, morphological operators
and interactive correction in each of the ten 3D data sets independently. To speed up the segmentation process
an optical flow based interpolation technique10 was used for patient 5 to 8. First, the structure of interest was
segmented in the end–expiration image and the end–inspiration image. Then, structure preserving interpolation10

was applied to generate initial segmentations for all remaining 3D images. Afterwards, the initial segmentations
were corrected interactively by an physician. Surface models of the segmented organs were generated in order to
enable the visualization of the 4D breathing motion and the individual tumor mobility.

In a first study, lung segmentation results were used to perform a fractional air content analysis.8 To validate
the quality of the reconstructed 4D CT images the air volume in the lungs was calculated for each 3D image
of the image sequence. These values were correlated with the tidal volumes chosen for reconstruction of the 3D
images considered. A strong correlation was seen as a prerequisite for high-quality motion analysis.

To describe the tumor mobility the tumor’s center of mass was calculated for each 3D image of the image
sequence. The tumor trajectory is expressed as the series of displacements of the mass center of successive
time frames. This enables the quantification of the displacement in craniocaudal (CC), anteroposterior (AP)
and lateral direction and the amount of the maximum displacement of the tumor. Moreover, 3D appearance
probabilities of the tumor can be computed. Thus, the relative frequency of appearance of a tumor voxel in
the sequence of 3D CT data sets represents an estimator of the tumor’s appearance probability at the position
considered. Hence, for each voxel the appearance probability of the tumor was estimated and visualized color-
coded (fig. 2). Red areas represent voxels that were covered by the tumor during the whole breathing cycle. For
the definition of motion-oriented, patient–specific treatment margins around the tumor all voxels with appearance
probability p ≥ 0 have to be covered by the margins.

To study thorax and lung deformations the optical flow of the segmented 4D data sets was calculated as
described in section 2.2. The resulting deformation fields are used to approximate the trajectories of points on
the organ surfaces. So, the maximum displacement of any surface point can be calculated and regions with large
respiratory motion are identified (see fig. 4). Further on, the shape and deflection of different trajectories can
be compared.



Figure 2. 3D visualization of the color-coded esti-
mated 3D appearance probabilities of a lung tumor
for patient 2. Red colored voxels belong to tumorous
tissue during the whole breathing cycle. From red to
blue this portion decreases.

In radiotherapy of the thorax, it is difficult to observe
the tumor motion directly during treatment. Therefore, in
some applications motion of a surrogate structure, such as
the chest wall, the abdomen or the diaphragm, is used to
predict tumor position for the purpose of respiratory gating
or robotic motion compensation. By identifying trajectories
of the tumor’s center and trajectories of surface points an
analysis of the dependency between tumor motion and organ
motion becomes possible. So, the relationship between the
motion of the observed structure and tumor motion can be
studied.

In our application, the main interest is to identify regions
of the skin which are suitable for predicting tumor position.
Let

Y =

 y1,1 y1,2 y1,3

...
...

...
yn,1 yn,2 yn,3


be the trajectory of the tumor’s center and

X =

 x1,1 x1,2 x1,3

...
...

...
xn,1 xn,2 xn,3


is the trajectory of an arbitrary point. Now, a scalar measure which quantifies the dependence of the tumor

motion and point motion is needed. A possible attempt is to reduce the three-dimensional motion to an one-
dimensional value.26–28 For example, the correlation between the tumor motion in CC direction and the skin
motion in AP direction is considered. In order to enable a 3D–3D analysis of the relationship between tumor
and skin motion a multivariate linear regression model is used. Here, a matrix B is sought which describes the
linear dependence between the two trajectories:

Y = X̃B + E,

where X̃ = (1X), B is the matrix of regression coefficients and E is the error term. The least–squares estimation
of the coefficients is given by29

B̂ =
(
X̃T X̃

)−1

X̃T Y.

Now, hypothesis testing can be used to assess the significance of the predicted dependence. For instance, Wilk’s
Lambda for the overall regression test provides a scalar measure to rate the dependence between X and Y. In
our experiments, this scalar value turns out to be sensitive against noise and incorrectly determined trajectories.
The frobenius norm of the residual error matrix ‖Ê‖2F = ‖Y − X̃B̂‖2F indicates the quality of fit between the
predicted trajectory X̃B̂ and the true trajectory Y. This scalar measure is more robust but is not scale invariant
and thus, an inter-patient comparison is not possible. Nevertheless, the measure can be used to separate regions
with high or low tumor–correlated motion.

3. RESULTS

Respiratory motion of lung, skin and tumor was analyzed in spatiotemporal CT data sets of eight lung cancer
patients. The 4D CT data sets were acquired and reconstructed by the methods described in section 2.1.
The optical flow based reconstruction method improves image quality of the reconstructed 4D CT data sets,
significantly. The reconstructed 4D data sets consist of between 1920 (10× 192 slices) and 3808 (14× 272 slices)
image slices with an in–plane resolution of 512 × 512 voxel resulting in 1–2 GB memory requirement per data
set.



data set tumor motion tumor location
CC AP LA total

Patient 01 5.9 mm 1.9 mm ≤ 1 mm 6.0 mm left lung, near the heart
Patient 02 11.4 mm 3.4 mm 1.1 mm 12.0 mm right lower lung lobe
Patient 03 2.0 mm ≤ 1 mm ≤ 1 mm 2.2 mm right upper lung lobe
Patient 04 2.8 mm 6.0 mm ≤ 1 mm 6.7 mm left upper lung lobe
Patient 05 4.1 mm 1.7 mm 1.1 mm 4.5 mm left upper lung lobe
Patient 06 1.2 mm 1.2 mm 1.5 mm 2.2 mm right upper lung lobe
Patient 07 19.6 mm 1.1 mm 2.6 mm 19.6 mm left lingual
Patient 08 6.0 mm ≤ 1 mm 1.0 mm 6.0 mm near right hilum

Table 1. Maximum excursion in craniocaudal (CC), anteroposterior (AP) and lateral (LA) direction of tumor mass center
during breathing in 8 patient data sets with lung tumors.

Air content analysis showed excellent correlation (Pearsons correlation coefficients from 0.960 to 0.991) be-
tween calculated air content in the lungs and spirometry values for all patient data sets considered. This supports
that the reconstructed 4D CT data sets are suitable for motion analysis of high accuracy.

In order to generate motion models of the reconstructed data sets both methods described in section 2.2
were applied: registration of consecutive slices and registration with a reference frame. Due to the large size of
the data sets the computation of the motion models required a long time: between 25 and 40 hours per patient
on a standard PC(2.2 GHz AMD Opteron, 8GB RAM). Furthermore, the main advantage of the approach
by registration of consecutive slices, the possibility to regularize in temporal direction, could not be used due
to run–time and memory issues. Validation of nonrigid registration algorithms is difficult and is an active
area of research. Visual assessment of the registration results indicated that both registration algorithms are
able to determine adequate respiratory motion and organ deformation. Our analysis methods calculate similar
results basing on both registration approaches. However, small differences exist. First evaluations indicate that
registration with a reference frame generates more smooth trajectories while interpolation errors introduce some
noise in the trajectories calculated by registration of consecutive slices. Therefore, the following analysis results
presented are based on the motion model generated by registration with a reference frame. An estimated motion
field is shown in figure 1.

For a detailed analysis of the respiratory tumor motion the 3D trajectory of the tumor mass center was
analyzed in different directions. The projections of the 3D trajectory in craniocaudal (CC), anteroposterior
(AP) and lateral (LA) direction were considered to quantify tumor motion and to compare the tumor motions of
different patients. Analysis of tumor mobility yields that amount and direction of tumor motion differ obviously
between the patients. Localization and maximum excursion of the tumors of the patients considered are listed
in table 1. In fig. 3 projections of the tumor trajectories in CC, AP and LA directions are presented for patient
data sets 2 and 4. The tumor location in these data sets varies noticeably - patient 2: tumor in the right
lower lung lobe near the diaphragm, patient 4: tumor in the upper lung lobe near the chest wall. The tumor
of patient 2 moves much stronger than the tumor of patient 4 and shows a motion amplitude of more than
12 mm in predominantly craniocaudal direction. In contrast, the tumor of patient 4 moves predominantly in
anteroposterior direction with a motion amplitude of about 6 mm. Thus, motion pattern of the tumor in patient
2 seems to be strongly influenced by movements of the nearby diaphragm while the motion pattern of the tumor
in patient 4 seems to be influenced by movements of the chest wall. Hence, a dependency between the motion
of the tumor and its location seems to be apparent.

In order to study the interrelationship among tumor motion and skin motion a multivariate regression was
performed assuming a linear relationship of tumor trajectory (regressor) and skin point trajectories (regressands).
In fig. 4(right) the sum of squared distances between tumor trajectory observed and tumor trajectory predicted
(the frobenius norm of the residual error matrix) is shown for two patients. Furthermore, the magnitude of the
displacement of skin surfaces is visualized color–coded in fig. 4(left). Thus, regions with large respiratory motion
can be identified. Regarding fig. 4, for patient 7 only small displacements appear in the chest region and very
large displacements appear in the abdomen. In contrast patient 2 has large displacements in the chest region.



Figure 3. Left: Visualization of tumor position inside the lung for patient 2 (top) and patient 4 (bottom). Right:
Motion of the tumor mass center in two patient data sets in craniocaudal, anteroposterior and lateral direction from
end-inspiration (abscissa value = 0) to end-expiration (abscissa value = 0.5) and back (abscissa value = 1).

The regions of large motion agree widely with regions of a small frobenius norm of the residual error matrix. The
analysis of the interrelationship among tumor motion and skin motion mainly mirrors following results: Regions
on the skin which are suitable to predict tumor motion differ between the patients. Thereby, it can be stated
that large motion of the skin points poses a prerequisite for tumor motion prediction. Thus, areas which were
identified as suitable for tumor motion prediction widely agree with skin regions of large motion. These results
indicate that the optimal position of skin markers differ from patient to patient. But further research on this
topic is necessary.

4. CONCLUSION

The spatiotemporal analysis of breathing motion in 4D image data is a challenging task that opens up the
possibility to get a deeper understanding of respiratory tumor and organ motion. Moreover, the analysis of
individual breathing patterns is a key problem for the improvement of radiation therapy of thoracic tumors.

Reconstructed 4D image data sets were used to model respiratory motion and to analyze the motion of lung
tumors and organ surface during the breathing cycle. We presented methods to calculate dense volumetric motion
models and to use these models to study trajectories of organ surfaces or landmarks. Furthermore, techniques
to analyze and visualize the patient–specific tumor motion and the correlation between the motion of tumor and
skin were presented.



First results indicate that the tumor motion changes from patient to patient depending on the localization
of the tumors in the lung and the individual differences in breathing patterns. Furthermore, first steps were
done to investigate correlations between the respiratory state and the motion of skin markers in order to predict
the abdominal organ motion from external, non-invasive tracking data. In contrast to other approaches like
computing correlation coefficients with respect to 1D signals (point excursions, displacements in AP, RL, CC
direction, etc.; e.g.27) methods of multivariate statistics were used to study the 3D–3D interrelationship between
tumor and skin motion. Thus, thought is given to the nature of breathing caused motion of thoracic structures
which generally occurs in all three spatial dimensions.

In further research the number of patient data sets will be increased and it will be of interest to analyze
the breathing behavior of different patients in more detail in order to identify typical breathing patterns. The
segmentation of 4D CT data consisting of up to 14 3D data sets is a time-consuming task and an automation of
this process is needed. Therefore, future work will include the development of improved data driven segmentation
techniques to reduce the segmentation time. Furthermore, an quantitative evaluation of the calculated motion
models is necessary. Here, methods will be developed to compare different approaches for the calculation of
trajectories and to quantify the precision of estimated trajectories.
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Figure 4. Left:Visualization of the maximum displacement of the skin surface during the respiratory cycle of patient 7
(top) and patient 2 (bottom). Black surface points indicate a maximum displacement ≥ 5mm (scale: 0− 7 mm) Right:
Performing a multivariate regression (i.e. assuming a linear relationship) of tumor (regressor) and skin point trajectories
(regressands) the SSD distance between the tumor trajectory observed and the tumor trajectory predicted is displayed.


