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ABSTRACT

Modern tomographic imaging devices enable the acquisition of temporal image sequences. In our project, we
study cine MRI sequences of patients with myocardial infarction. Because the sequences are acquired with
different temporal resolutions, a temporal interpolation is necessary to compare images at predefined phases of
the cardiac cycle.

This paper presents an interpolation method for temporal image sequences. We derive our interpolation
scheme from the optical flow equation. The spatiotemporal velocity field between the images is determined
using an optical flow based registration method. Here, an iterative algorithm is applied, using the spatial and
temporal image derivatives and a spatiotemporal smoothing step. Afterwards, the calculated velocity field is
used to generate an interpolated image at the desired time by averaging intensities between corresponding points.

The behavior and capability of the algorithm is demonstrated by synthetic image examples. Furthermore,
quantitative measures are calculated to compare this optical flow based interpolation method to linear inter-
polation and shape–based interpolation in 5 cine MRI data sets. Results indicate that the presented method
outperforms both linear and shape–based interpolation significantly.
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1. INTRODUCTION

Modern tomographic imaging devices enable the acquisition of temporal image sequences and the study of organ
motion becomes more and more important. For example cine MRI is used for the functional analysis of the
heart1 and 4D–CT data sets are used for modelling organ motion during the respiratory cycle.2 But, in general,
the spatial and temporal resolution of imaging devices is limited and a compromise between spatial resolution,
temporal resolution, acquisition time and signal to noise ratio must be found. Therefore, in a number of image
processing tasks a spatial and temporal interpolation of data sets is necessary to calculate dense motion models
for instance. In our project, we compare cardiac cine MRI sequences of different patients, acquired with different
temporal resolutions. A temporal interpolation of the image data is necessary to generate images at predefined
phases of the cardiac cycle.

Interpolation is commonly used in medical image processing and is required, whenever the acquired image
data is not at the same level of discretization as desired or whenever geometric transformations of the image data
are necessary. There are numerous techniques for the spatial interpolation of images. Grevera and Udupa (1998)3

divide spatial interpolation methods into two groups: intensity–based methods and shape–based methods. See
Lehmann et al. (1999)4 and Meijeriing et al. (2001)5 for a comparison of different intensity–based methods and
Grevera and Udupa (1998)3 for a comparison of intensity– and shape–based interpolation methods.

Any spatial interpolation algorithm can be used to generate image information for arbitrary time points, if
the temporal nD+t image sequence is considered as a spatial image data set in n + 1 dimensions. But, temporal
dependence between objects in successive frames is lost and this conversion may cause problems, since the units
of measurement of the variable in time–direction are different from those of the other (spatial) variables.

This paper describes a method for the interpolation between frames of a temporal image sequence based on
non–linear registration. The approach consist of two steps. First, the optical flow between the temporal images
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is determined using an optical flow based registration algorithm. Afterwards the calculated velocity field is used
to generate an interpolated image at the desired time. The algorithm regards the spatiotemporal nature of the
image sequence. So a conversion into a spatial data volume is not necessary.

Other registration–based interpolation methods for spatial 3D image volumes were already presented.6, 7

Goshtasby et al. (1992)6 presented a registration–based method to interpolate between neighbouring slices in
tomographic image data sets. The slices were registered using intensity and gradient features. To calculate
the intensity values of the interpolated slice from the resulting displacement field, ”interpolation lines” were
calculated to identify corresponding points in two adjacent original slices. However, the paper is more than ten
years old and the registration method used is not state of the art. Penney et al. (2004)7 applied voxel–based
registration using B–spline regularization and the normalized mutual information similarity measure to calculate
correspondences between neighbouring slices. The interpolation step is similar to the method used by Goshtasby
et al. (1992). Both methods are limited to consecutive slices and no theoretical motivations for the registration
algorithm used and for the concept of ”interpolation lines” were given. In particular, the use of the mutual
information similarity measure was not motivated by Penney et al., in spite of existing faster and more reliable
registration methods for monomodal data.

The theoretical motivation of our registration method as well as for the interpolation step is the optical
flow equation. In contrast to the other approaches, the optical flow equation makes the use of more than two
consecutive images for the calculation of the velocity field possible and the concept of the ”interpolation lines”
is no longer needed. First, the behavior and capability of the algorithm was demonstrated on synthetic example
images. Furthermore, cine MRI data sets were used to perform a quantitative analysis and statistical measures
were calculated to compare our interpolation algorithm to linear and shape–based interpolation.

2. METHODS AND MATERIALS

The presented interpolation method consists of two steps: First the time–dependend optical flow field is deter-
mined using a non–linear registration method. Following the calculated optical flow field is used to generate
interpolated images for arbitrary time points. In section 2.3 the evaluation methods are explained in detail.

2.1. Determining the optical flow

The initial hypothesis of optical flow based methods is that pixel intensities of time varying image regions remain
constant. The conservation of the intensity of points under motion is formulated in the expression that the total
derivative of the image function is zero8:

dI(x(t), t)
dt

= 0, (1)

where I : IR2 × IR → IR is the image intensity function∗. From the intensity conservation assumption (1) follows
for the image I(x(t), t) at time t = t0 + δt:

I(x(t), t) = I(x(t − δt), t − δt) = I(x(t0), t0). (2)

For a small time step δt we can approximate

x(t − δt) = x(t) − δt
∂x

∂t
+ O2,

where O2, the 2nd and higher order terms, are assumed neglible. Eq. (2) becomes

I(x(t), t) = I(x(t) − δt · v, t − δt), (3)

where v =
(

∂x
∂t , ∂y

∂t

)T

is the (two–dimensional) velocity field. Thus, if the velocity field v is known, we can
interpolate the image at time t from an image at time t0 = t − δt.

∗Here, we restrict to the two–dimensional case, but the extension to other dimensions is straight forward.
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A number of different optical flow methods have been proposed to estimate the velocity field from a set of
images (see Barron et al. (1994)9 for a survey and comparison). From the optical flow equation (1) we obtain

v = −∇I
∂tI

‖∇I‖2
. (4)

where ∇I is the spatial image gradient. However, equation (4) is ill–posed and not sufficient to compute both
components of the velocity vector.8, 9 Only the motion component in the direction of the local brightness
gradient ∇I of the image intensity function may be estimated. As a consequence, the flow velocity cannot be
computed locally without introducing additional constrains. In our implementation the necessary regularization
is done by a spatiotemporal Gaussian smoothing of the velocity field. The smoothing step limits the possible
differences between magnitude and direction of spatially and temporally neighbouring velocity vectors. The
temporal derivative ∂tI can be computed by finite differences or by a convolution with a Gaussian derivative in
time direction to take more than two consecutive frames into account. The spatial derivative can be approximated
by averaging the gradients of neighbouring image frames ∇I = (I(x, ti) + ∇I(x, ti+1))/2. The resulting optical
flow equation

v = − 2(∇I(x, ti) + ∇I(x, ti+1)) ∂tI

‖∇I(x, ti) + ∇I(x, ti+1)‖2 + k
(5)

has the disadvantage that the gradient has to be recomputed at each iteration. But, for the interpolation step
the inverse velocity field is needed and thus the symmetric behaviour of eq. (5) is advantageous. The constant
k is estimated from local image properties and is used to stabilize the calculation.

The registration algorithm has two parameters: the variance of the spatiotemporal Gaussian smoothing
function and the stop criterion.

2.2. Optical flow based interpolation of temporal images

From the intensity conservation assumption (eq. (3)) follows for the image I(x, t) at time t = t0 + δt:

I(x(t), t) ≈ I(x(t) − δt · v, t0). (6)

Thus, if the velocity field v is known, we can interpolate the image at time t from an image at time t0. But
in general the intensity conservation assumption might not be fulfilled and structures may appear or disappear
between two time steps. Therefore, we use a weighted average between corresponding voxels in the adjacent time
frames I(x, ti) and I(x, ti+1):

I(x(t), t) = (1 − δt) · I (x(t) − δtv, ti) + δt · I (
x(t) − (1 − δt)v−1, ti+1

)
, (7)

with ti < t < ti+1, δt = t − ti and a normalized time step ti+1 − ti = 1. In general, the inverse velocity field
v−1 can’t be computed directly. In our interpolation scheme an iterative Newton–Raphson method is used to
calculate the inverse velocity for each grid point.10

Problems can arise near image borders, if x(t) − δtv or x(t) − (1 − δt)v−1 lie outside the frame. In these
cases the position in the interpolated image is marked with an out of data flag.

2.3. Evaluation methods

Our interpolation method relies on two assumptions: the intensity conservation assumption as formalized in eq.
(1) and that the algorithm described in section 2.1 is capable to calculate the correct velocity field v.

In a first evaluation study we try to gain insight into how the algorithm works. Therefore we generated two
synthetic phantoms.

Phantom I – moving disk: Three images of a white disk at different locations were generated (see fig. 1).
The disks were translated by (5, 15) and (10, 30) pixels in (x, y)–direction. Our aim was to estimate the
middle disk image by the interpolation methods and to compare these to the phantom.
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Figure 1. Top row: Three frames of a moving disk (phantom I). Bottom row: Estimates of the middle image of the
phantom by linear interpolation (left), optical flow based interpolation (middle) and shape–based interpolation (right).
The optical flow–based method produces the most accurate result.

Phantom II – disk and disk with hole: A disk image and a corresponding disk image with a varying radius
and a hole in the middle were generated (see fig. 2). For this image sequence the intensity conservation
assumption is violated. The aim was to evaluate the behavior of the algorithm in this case.

In a second evaluation procedure we calculated quantitative measures to compare our interpolation method
with two other methods: linear and shape–based interpolation.11 Linear interpolation is the most frequently
used interpolation technique and was chosen as a baseline reference. The shape–based interpolation algorithm
was chosen since it was shown to have the best performance in a comparison of interpolation methods.3 The
shape based interpolation was implemented according to.11

For the quantitative evaluation five cardiac MRI datasets (ECG-triggered true FISP sequences, between 13
and 21 time frames, 224 × 256 pixels) were used. One step of the shape–based interpolation is to convert the
n–D grey value image into a (n + 1)–D binary image (the so–called lifting). Afterwards a (n + 1)–D distance
transform is performed. For images with a large number of grey values these steps can create computational
problems, both in CPU time and memory requirements. Therefore, the image intensities were limited to 256
grey values.

For evaluation each frame of the temporal image sequence (apart from the first and the last slice) was removed
one at a time and the three interpolation methods were used to interpolate between the neighboring image frames.
Finally, the interpolated images were compared to the original removed images. In conformity with the paradigm
proposed by Grevera and Udupa3 three error measures were used:

Mean difference (MD): For one sequence, Iint
τ (x) and Iorig

τ (x) represent the intensity value at pixel position
x in the τ–th frame of the interpolated and the original image. Nτ denotes the number of interpolated
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Figure 2. Top row: The two images of phantom II. Bottom row: Interpolations between the phantom images with
varying time steps. Each row shows one line in the interpolated image for a given time step. The position of the line
is indicated by the dotted line in the top images. Bottom left: linear interpolation, bottom middle: optical flow based
interpolation and bottom right: shape–based interpolation. Although the intensity conservation assumption is violated
the optical flow–based method produces satisfactory results. In this case a compromise between linear and shape–based
interpolation was found.

images and Ωτ the set of pixels in frame τ . The MD is defined by:

MD =
1

Nτ

Nτ∑
τ=1

1
|Ωτ |

∑
x∈Ωτ

|Iint
τ (x) − Iorig

τ (x)| (8)

Number of sites of disagreement (NSD): This measure is the number of pixels where the difference between
the Iint

τ (x) and Iorig
τ (x) is greater than a threshold θ:

NSD =
Nτ∑
τ=1

∑
x∈Ωτ

δ(|Iint
τ (x) − Iorig

τ (x)|), where δ(z) =
{

0, if z < θ
1, otherwise (9)

In our evaluation a threshold of 5% of the maximum intensity value in the image was chosen.

Largest difference per frame (LD): This represents the maximum difference between corresponding pixel
values:

LD(τ) = max
x∈Ωτ

(|Iint
τ (x) − Iorig

τ (x)|) . (10)

For all error measures, pixels containing out of data flags were excluded from the calculation.

To compare two interpolation methods a measure called statistical relevance was used. This measure expresses
the degree of importance of the observed difference between the methods, e.g. the statistical relevance between
the linear MD and the optical flow based MD is given by:

rMD
flow/lin =

⎧
⎨
⎩

+100 ·
(
1 − MDflow

MDlin

)
, if MDlin > MDflow

−100 ·
(
1 − MDflow

MDlin

)
, otherwise

. (11)
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statistical relevance

data set flow/lin flow/shape

rMD rNSD rLD rMD rNSD rLD

MRI 01 3.35 12.11 14.46 3.4 19.91 20.72
MRI 02 – 13.33 21.95 1.47 24.65 26.3
MRI 03 5.49 9.35 9.97 3.05 8.19 16.07
MRI 04 3.69 8.63 – 2.84 9.18 17.68
MRI 05 – 3.07 7.12 3.02 14.24 12.75

Table 1. Statistical relevance values of mean difference (MD), number of sites of disagreement (NSD) and largest difference
per frame (LD) to compare the optical flow–based interpolation method with linear and shape–based interpolation.
Positive values indicate the optical flow method performed better. A dash in the table indicates that the difference
between the two methods was not statistically significant (paired student’s t–test, p ≤ 0.05).

3. RESULTS

Fig. 1 shows the three frames of phantom I and the results of interpolation of the middle image. The linear
method shows a shadowing effect and the shape–based interpolation induces a slight deformation of the disk.
The optical flow based method produces the most accurate result. Because large displacements were necessary,
while only sparse gradient information is available, we used σ2 = 5 for the spatial Gaussian smoothing of the
deformation field in this case.

In a second qualitative evaluation we interpolated 20 frames between the original images of phantom II at
varying time steps δt ∈ [0, 1]. The bottom row of fig. 2 gives a comprehensive sketch of the behavior of the
different interpolation methods. Each row of the images show one line of the interpolated image for a given time
step. Although the intensity constrain is violated the optical flow based method produced satisfactory results.
In this case a compromise between intensity–based and shape–based interpolation was found.

Thirdly, 5 cine MRI sequences were considered. In all cases, a factor of σ2 = 1.5 was used for spatial and
temporal smoothing. Due to the cyclic behavior of the cardiac image sequences periodic boundary conditions
are used for the Gaussian convolution in time direction. The velocity field was calculated according to eq. (5),
where the temporal derivative ∂tI was approximated by finite differences. More complex approaches for the
computation of the temporal derivative led to substantially longer computation times but not to substantially
improved interpolation results.

Table 1 shows the statistical relevance of the error measures MD and NSD and the mean statistical relevance
of LD (averaged over the frames) to compare the optical flow based interpolation(flow) with the linear(lin) and
shape–based(shape) interpolation methods. Positive values indicate the first method performed better. A dash in
the table indicates that the difference between the two methods was not statistically significant (paired student’s
t–test, p ≤ 0.05). The results in table 1 show that the optical flow based interpolation outperformed linear and
shape–based interpolation in most cases, significantly. In contrast to NSD and LD only a slight improvement of
the mean difference (MD) is indicated. Since a large part of the displayed structures does not change over the
cardiac cycle the mean difference is strongly influenced by noise.

The most noticeable improvements by our method were observed, where the image structures change between
adjacent frames considerably. In fig. 3 sample images estimated by the three interpolation methods and corre-
sponding difference images were shown. The linear interpolated image appears blurred and large differences can
be observed. The shape–based interpolation conserves edges of image structures but small details are lost. The
optical flow based interpolation performs more accurately and only few differences are shown in the difference
image.

4. DISCUSSION AND CONCLUSION

We presented a method for interpolating temporal image sequences. The interpolation algorithm was theoretically
derived from the optical flow equation and the performance of the algorithm was evaluated qualitatively and
quantitatively. The quantitative results show that the optical flow based method clearly outperforms the linear
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Figure 3. Top row: Three consecutive slices of a cine MR sequence. The interpolation results for the second slice are
shown in the middle row. Middle row: Sample slice estimated by linear (left), optical flow based (middle) and shape–
based (right) interpolation. Bottom row: Corresponding difference image Iint(x)− Iorig(x) between the interpolated and
original slice. The linear interpolated image (left) appears blurred and large differences can be observed. The shape-based
interpolation (right) conserves edges of image structures but small details are lost. The optical flow–based interpolation
(middle) performs more accurately and only few differences are shown in the difference image.

and shape–based interpolation. The presented method is also applicable to interpolate between neighboring
slices in spatial tomographic data sets. An evaluation of this approach is accomplished at present.

Furthermore, in our experiments the optical flow based method was computational less expensive than the
shape–based interpolation. The performance of the shape–based method strongly depends on the implementation
of the distance transformation. We used the algorithm of Danielsson (1980)12 but faster algorithms exist.13

However, in contrast to the shape–based method the performance of the optical flow based interpolation is
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independent of the dynamic range of the images.

In contrast to the registration methods used by Goshtasby et al. (1992) and Penney et al. (2004), our
algorithm shows a symmetric behavior. A drawback of our method is, that the Gaussian regularization does not
guaranty that the optical flow field is a homeomorphism and that the inverse exists for all points. Therefore,
further research will adress the integration of other regularization techniques. Furthermore, an evaluation of
different strategies for the calculation of the optical flow field is planned.

REFERENCES
1. A. Frangi, W. Niessen, and M. A. Viergever, “Three–dimensional modeling for functional analysis of cardiac

images: a review,” IEEE Trans. Medical Imaging 20(1), 2001.
2. D.-A. Low, M. Nystrom, E. Kalinin, P. Parikh, J.-F. Dempsey, J.-D. Bradley, S. Mutic, S.-H. Wahab,

T. Islam, G. Christensen, D.-G. Politte, and B.-R. Whiting, “A method for the reconstruction of four-
dimensional synchronized CT scans acquired during free breathing,” Med.-Phys. 30(6), pp. 1254–63, 2003.

3. G. J. Grevera and J. K. Udupa, “An objective comparison of 3–D image interpolation methods,” IEEE
Trans. Medical Imaging 17(4), pp. 642–652, 1998.

4. T. M. Lehmann, C. Goenner, and K. Spitzer, “Survey: Interpolation methods in medical image processing,”
IEEE Trans. Medical Imaging 18(11), 1999.

5. E. H. W. Meijering, W. J. Niessen, and M. A. Viergever, “Quantitative evaluation of convolution-based
methods for medical image interpolation,” Med Image Anal 5, pp. 111–126, 2001.

6. A. Goshtasby, D. A. Turner, and L. V. Ackerman, “Matching of tomographic slices for interpolation,” IEEE
Trans. Medical Imaging 11(4), 1992.

7. G. P. Penney, A. Schnabel, D. Rueckert, and M. A. Viergever, “Registration–based interpolation,” IEEE
Trans. Medical Imaging 23(7), 2004.

8. B. K. P. Horn and B. G. Schunck, “Determining optical flow.,” Artificial Intelligence 17, pp. 185–203,
Aug. 1981.

9. J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comp.
Vision 12(1), pp. 43–77, 1994.

10. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C, Cambridge
University Press, 1992.

11. G. J. Grevera and J. K. Udupa, “Shape–based interpolation of multidimensional grey–level images,” IEEE
Trans. Medical Imaging 15(6), pp. 881–892, 1996.

12. P.-E. Danielsson, “Euclidean distance mapping,” Comp Graph Img Proc 14, pp. 227–248, 1980.
13. C. Maurer, R. Qi, and V. Raghavan, “A linear time algorithm for computing exact euclidean distance

transforms of binary images in arbitrary dimensions,” IEEE Trans PAMI 25, pp. 265–270, 2003.

Proc. of SPIE Vol. 6144  61442K-8


	SPIE Proceedings
	MAIN MENU
	Table of Contents
	Search
	Close




